Seat No.:	
-----------	--

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV(NEW) EXAMINATION - SUMMER 2015

Subject Code: 2140909 Subject Name: FIELD THEORY			Date: 08/06/2015	
Tir	•	10:30am-1.00pm Total Marks:	70	
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Explain cylindrical coordinate system in brief. Also write the equations of differential length, differential surfaces and differential volume elements.	07	
	(b)	The given points are $A(x = -1, y = 2, z = 3)$, $B(\rho = 3, \Phi = 60^{\circ}, z = 6)$ and $C(x = 2, y = 3, z = -1)$. Find (i) Cylindrical co-ordinates of A (ii) Cartesian co-ordinates of B and (iii) Spherical co-ordinates of C .	07	
Q.2	(a)	An infinite uniform line charge having line charge density of $\rho_L = 30 \mu\text{C/m}$ placed on the z-axis. Find the total electric field intensity at $(3, 4, 5) m$.	07	
	(b)	Derive the equation of total electric field intensity in vector form due to infinite uniform sheet charge distribution in free space. OR	07	
	(b)	A positively charged circular ring with $\rho_L = 10 nC/m$ having radius of $5 m$ lies on $z = 0$ plane with its centre at origin. Find \overline{E} at point $(0, 0, 5) m$ and also find the value of a point charge Q which will produce the same \overline{E} at a point $(0, 0, 5) m$.	07	
Q.3	(a) (b)	State and explain the Gauss's law. Derive the Maxwell's first equation applied to Electrostatic by using equations of divergence and Gauss's law for electric flux density \overline{D} . OR	07 07	
Q.3	(a)	Define the potential gradient. Derive relationship between potential and electric field intensity.	07	
	(b)	Derive equation of potential difference V_{AB} within the electric field produced by a point charge Q .	07	
Q.4	(a) (b)	Write a short note on continuity equation. Explain boundary conditions between two perfect Dielectric materials. OR	07 07	
Q.4	(a) (b)	Derive Poisson's and Laplace's equations. State Maxwell's equations in point form and explain physical significance of the equations.	07 07	
Q.5	(a) (b)	State and Explain Ampere circuital law. A point charge, $Q = -10 \mu C$, is moving with a velocity of $6 \times 10^6 \text{m/s}$ in a direction specified by the unit vector $\bar{a}_v = 0.5\bar{a}_x - 0.6\bar{a}_y + 0.2\bar{a}_z$. Find the magnitude of the vector force exerted on that moving charge by the field: (a) $\bar{B} = 2\bar{a}_x - 3\bar{a}_y + 5\bar{a}_z \text{T}$; (b) $\bar{E} = 2\bar{a}_x - 3\bar{a}_y + 5\bar{a}_z \text{kV/m}$; (c) \bar{B} and \bar{E} acting together.	07 07	
Q.5	(a) (b)	OR Explain loss less propagation of sinusoidal voltage in transmission line. Write a short note on sources of EMI.	07 07	
