Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) - EXAMINATION – SUMMER 2018

Subject Code:2140909 Date:28/05/2018

Subject Name:Field Theory

Time:10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

3. Figures to the right indicate full marks.				
			MARKS	
Q.1	(a)	State and explain Coulomb's law.	03	
C	(b)	Explain physical Significance of Curl related to types of field.	04	
	(c)	Obtain the Spherical co-ordinates of $10\overline{a}_x$ at the point $P(x = 2, y = 3, z = 4)$.	07	
Q.2	(a)	State and Explain various types of charge distribution with mathematical	03	
	a >	equation.	0.4	
	(b)	Derive relation between current density and Volume charge Density.	04	
	(c)	Define potential difference and potential gradient. Also Establish relation	07	
		between Electrical field and potential gradient.		
	(.)	$\mathbf{OR}_{60 \sin \theta}$	07	
	(c)	An Electrical potential is given by $V = \frac{60 \sin \theta}{r^2}$ v. Find V and E at spherical co-	07	
		ordinate P $(3, 60^{\circ}, 25^{\circ})$.		
Q.3	(a)	Give examples of different capacitor configuration.	03	
	(b)	If a potential $V = x^2yz + Ay^3z$ Find 'A' So that Laplace's equation is	04	
		satisfied.		
	(c)	Obtain the Expression for field intensity H at the centre of a circular carrying	07	
		current I, using Biot-Savart law		
OR				
Q.3	(a)	Write Poisson's and Laplace equation. also state use of this equation and	03	
		uniqueness theorem		
	(b)	State and Explain Ampere's circuit Law.	04	
	(c)	Derive boundary condition between two perfect Dielectrics.	07	
Q.4	(a)	State and Explain Stoke's theorem	03	
	(b)	A copper conductor having a 0.8 mm diameter and length 2 cm carries a current	04	
		of 20 A. Find Current density, Electrical Field Intensity, voltage drop and		
		resistance for 2 cm length. Take conductivity of copper is 5.8×10^7 S/m.		
	(c)	Explain force between two differential current elements.	07	
OR				
Q.4	(a)	Explain magnetic dipole moment.	03	
	(b)	Given point C (5,-2, 3) and D (4,-1, 2) and current element $IdL = 10^{-4} (4,-3, 1)$	04	
		Am at point C, which produce a field dH at point D. Find dH .		
	(c)	Derive Point form of Maxwell's equation for static field and time varying field	07	
o =		using Faraday's law	0.2	
Q.5	(a)	Define term Electromagnetic Interference and Electromagnetic compatibility.	03	
	(b)	Write Name of EMC standards bodies.	04	
	(c)	Derive transmission line Equation in terms of voltage and current.	07	

OR

Q.5	(a)	Explain primary constant and secondary constant of transmission line.	
	(b)	Give physical description of transmission line propagation.	04
	(c)	Discuss methods for controlling of EMI	07
