Seat No.: _____ Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(NEW) - EXAMINATION - SUMMER 2019

Subject Code:2140909 Date:20/05/2019

Subject Name: Field Theory

Time:02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Bold letters indicate vector quantity.

			MARKS
Q.1	(a)	Explain cylindrical coordinate system in brief.	03
	(b)	Explain unit vectors of Cartesian, cylindrical and spherical coordinate	04
	(c)	systems. Transform the vector $4\mathbf{a}_{x}$ - $2\mathbf{a}_{y}$ - $4\mathbf{a}_{z}$ intospherical coordinates at a point	07
	(C)	P(x = -2, y = -3, z = 4).	07
Q.2	(a)	State and explain Coulomb's law.	03
	(b)	Derive the expression for electric field due to infinite surface charge distribution in free space.	04
	(c)	An infinite uniform line charge having line charge density of $\rho L = 30$ nC/m placed at y = 3, z = 5. Find the total electric field intensity at (5,6,1).	07
	(c)	Point charges of 120 nC are located at A(0,0,1) and B(0,0,-1) in free space. Find (1) Find E at (0.5,0,0) (2) What single charge at origin would provide the identical field strength.	07
Q.3	(a)	State and prove the Gauss's law.	03
	(b)	Derive Maxwell's first equation as applied to electrostatics, using	04
	(c)	Gauss's law. Calculate the divergence of Gat P(2,-3,4) if $G = (a) \times a_{x+} y \cdot a_{y+} z \cdot a_{z} (b)$ $\rho \cdot a_{\rho} (c) r \cdot a_{r} (d) 6r^{2} sin\theta a_{r} + 2r^{2} cos\theta a_{\theta}$.	07
		OR	
Q.3	(a)	Explain physical significance of Divergence.	03
	(b)	Find divergence D at the origin if	04
	(c)	D = e-x sin y ax - e-x cos y ay + 2z az A co-axial conducting cylinder has charge density of ρs on the outer	07
	(C)	surface of the inner cylinder. Use Gauss' law to find 'D' in all the regions. Assume that inner cylinder has radius of 'a' metres and outer	07
		cylinder has radius of 'b' metres	
Q.4	(a)	Derive Poisson's and Laplace's equation.	03
	(b)	Explain electric dipole. Derive the expression for E at any distant point from dipole.	04
	(c)	Explain boundary conditions between two perfect dielectric materials. OR	07
Q.4	(a)	Explain concept of electric potential difference.	03
7. 7	(a) (b)	State and explain Ampere's circuital law.	03
	(c)	Write a short note on EMI & EMC.	07
Q.5	(a)	State and explain BiotSavart's law.	03
Ç	(b)	Explain the physical significance of the term: Curl of a vector.	04
	(c)	Explain Stoke's theorem with its mathematics expression.	07

OR

Q.5	(a)	Classify magnetic materials.	03
	(b)	Explain primary constant and secondary constant of transmission line.	04
	(c)	Describe the physical description of transmission line propagation.	07
