Subject Code:2140909

Date:01/01/2016

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (New) EXAMINATION - WINTER 2015

Subject Name: Field Theory Time: 2:30pm to 5:00pm Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.			Marks: 70	
Q.1	(a)	Explain Cartesian co-ordinate system along with the equations of differential length, differential surfaces and differential volume elements.	07	
	(b)	The given points are A ($x = 2$, $y = 3$, $z = -1$) and B ($r = 4$, $\theta = 25^{\circ}$, $\phi = 120^{\circ}$). Find (i) Spherical co-ordinates of A (ii) Cartesian co-ordinates of B and (iii) Distance from A to B .	07	
Q.2	(a)	An infinite uniform line charge having line charge density of $\rho_L = 200 \ nC/m$ placed on the z-axis. Find the total electric field intensity at $(6, 8, 3) \ m$.	07	
	(b)	Derive the expression of \square (Electric field intensity) at any point P due to infinite uniform line charge distribution in free space. OR	07	
	(b)	A circular ring with radius of $5 m$ lies on $z = 0$ plane with its centre at origin. If $\rho_L = 10 \ nC/m$, find value of a point charge Q placed at origin which will produce the same value of \mathbb{R} (Electric field intensity) at point $(0, 0, 5) m$.	07	
Q.3	(a) (b)	Define divergence and its physical significance. Derive expression of electric field intensity due to an electric dipole. OR	07 07	
Q.3	(a) (b)	Derive Maxwell's first equation applied to electrostatic using Gauss's law. Derive relationship between potential and electric field intensity.	07 07	
Q.4	(a) (b)	State and explain Ampere's circuital law. Explain boundary conditions between two perfect dielectric materials. OR	07 07	
Q.4	(a)	State Maxwell's equations in integral form and explain physical significance of the equations.	07	
	(b)	Derive the relation between I and J .	07	
Q.5	(a) (b)	Derive Poisson's and Laplace's equations. Derive Lorentz Force Equation.	07 07	
Q.5	(a) (b)	OR Write a short note on EMI & EMC. Describe the physical description of transmission line propagation.	07 07	
