GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018

Subject Code:2140909 Date:10/12/2018

Subject Name:Field Theory

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

		5. Figures to the right indicate full marks.	MADIZO	
			MARKS	
Q.1	(a)	State and Explain Coulomb's law	03	
	(b)	Define unit vector and explain it in each co-ordinate system.	04	
	(c)	Explain spherical co-ordinate system and give relationship between Cartesian and spherical co-ordinate system.	07	
Q.2	(a)	State parameters of transmission line and give difference between lumped parameters and distributed parameters.	03	
	(b)	State and explain Gauss's law.	04	
	(c)	Explain Physical meaning of divergence and state it's properties. OR	07	
	(c)	Obtain equation for flux density due to infinite line charge using Gauss's law	07	
Q.3	(a)	Explain Electrical dipole.	03	
	(b)	Explain phenomenon of polarization.	04	
	(c)	Two uniform line charges of density $\rho_l = 4$ nc/m lie on the x=0 plane and $Y = \pm 4$ are parallel to Z-axis. Find E at $(4,0,10)$ m.	07	
	OR			
Q.3	(a)	Define conservative field.	03	
	(b)	State Maxwell's equation in point form and integral form for static electromagnetic field.	04	
	(c)	A dielectric-free space interface has the equation $3x + 2y + z = 12$ m. The origin	07	
		side of the interface has $\in_n = 3.0$ and $E_1 = 2\overline{a_x} + 5\overline{a_z}$ v/m. Find E_2 .		
Q.4	(a)	Define displacement current and current density.	03	
	(b)	State and Explain Ampere circuit law.	04	
	(c)	Derive the expression for potential difference duce to infinite line charge. OR	07	
Q.4	(a)	Write Effect of Electromagnetic Interference.	03	
	(b)	State and explain Stoke's Theorem.	04	
	(c)	Define relaxation time and derive equation for Relaxation time.	07	
Q.5	(a)	Explain difference between steady magnetic field and time varying magnetic field.	03	
	(b)	Let $V_1(r, \theta, \emptyset) = \frac{6}{r}$ and $V_2(r, \theta, \emptyset) = 3$. State weather V_1, V_2 satisfied Laplace's equation.	04	
	(c)	Derive transmission line equation with help of equivalent circuit. OR	07	
Q.5	(a)	Write sources of Electromagnetic Interference.	03	
•	(b)	A circular loop located on $x^2 + y^2 = 25$, Z=0 carries a direct current of 10 A along $\overline{a_0}$. Determine \overline{H} at $(0,0,4)$ and $(0,0,-4)$	04	
	(c)	State and Explain Lorentz force equation on charged particles.	07	
		2 2		
