GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2017

Subject Code: 2141906	Date: 17/11/2017
-----------------------	------------------

Subject Name: Fluid Mechanics

Time: 02:30 PM TO 05:00 PM	Total Marks: 70
----------------------------	-----------------

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define terms: Viscosity, Specific gravity, Surface tension 03
 - (b) Explain the working of bellows pressure gauges with schematic diagram. 04
 - (c) Prove that the pressure is exerted equally in all direction at any point in a liquid at rest.
- Q.2 (a) A rectangular plane surface 2 m wide and 3 m high immerged in water, it plan is making an angle 45° with the free surface of water. The upper edge of rectangular plate is 1.5 m below the free surface. Calculate the position of center of pressure.
 - (b) Determine the metacentric height of a floating vessel if the angle of tilt Θ
 caused by moving load P placed over the center of the floating body.
 - (c) A solid cylinder of diameter 4 meters has a height 3 meters. Find the meta centric height of the cylinder when it is floating in water with its axis vertical. The specific gravity of the cylinder is 0.6.

OR

- (c) Explain pressure diagram for inclined and submerge surface. 07
- Q.3 (a) Define the terms: Streamline, Streak line, Uniform flow 03
 - (b) What is the irrotational velocity field associated with the potential $\phi = 3x^2$ -3x +3y² +16t² +12zt. Does the flow field satisfy the incompressible continuity equation?
 - (c) Derive an expression for the discharge through a venturimeter and compare it with orifice meter for measurement of flow through pipes.

OR

- Q.3 (a) State the momentum correction factor and list the momentum correction factor for different flow in pipes.
 - (b) Derive an expression for discharge over rectangular notch.
 (c) A rectangular air duct of 1.5 m² cross sectional area at section 1 which is
 07
 - (c) A rectangular air duct of 1.5 m² cross sectional area at section 1 which is gradually reduced to 0.75 m² area at section 2. The velocity of flow at section 1 is 12m/s and pressure is 30 kN/m². If the duct is bent by 45⁰, find the magnitude and direction of the force required to hold the duct in position. Take density of air is 1.15 kg/m³.
- **Q.4** (a) A fluid flow is given by $V = 18x^3i 20x^2yj$. State the flow is rotational or irrotational.
 - (b) Distinguish between free vortex flow and forced vortex flow. 04
 - (c) State the dimensional homogeneity. Prove that the following equations are homogeneous equation.

i. Q = AV ii. T =
$$2\pi \sqrt{L/g}$$
 iii. V = $\sqrt{2gH}$

07

-	_	_	
•	•	1	п
		ı	٠
•	,		v

Q.4	(a)	(a) Prove the velocity of a sound wave in a compressible fluid is given by		
		$C = \sqrt{\gamma RT}$.		
	(b)	Calculate the loss of head and power required to maintain the flow in a	04	
		horizontal circular pipe of 40 mm diameter and 750 m long when water flow at a rate of 30 liters/minute. Take Darcy's friction factor is 0.032.		
	(c)	Using Buckingham's π - theorem, show the efficiency η of a fan depends	07	
		on density ρ , dynamic viscosity μ of the fluid, angular velocity ω , diameter		
		D of the rotor and the discharge Q.		
Q.5	(a)	State the different observations in Reynold experiment for various states	03	
		of flow.		
((b)	A shaft of 100 mm diameter rotates at 60 rpm in a 200 mm long bearing.	04	
		Taking the two surfaces are uniformly separated by a distance of 0.5 mm		
		and taking linear velocity distribution in the lubricating oil having		
		dynamic viscosity of 4 centipoises, find the power absorbed in the bearing.		
	(c)	Prove the friction head losses is equal to one third of total head at inlet for	07	
		maximum power transmission through pipe.		
		OR		
Q.5	(a)	Determine the head lost due to friction in a pipe using Chezy's formula.	03	
		Diameter and length of pipe = 250 mm and 60 m		
		Velocity of water flowing in pipe = 2.5 m/s		
		Chezy's constant = 60		
	(b)	Explain capillary tube viscometer.	04	
	(c)	Prove that the average velocity is half of the maximum velocity in circular pipe with steady laminar flow.	07	
