GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2141907 Date: 08/06/2017

Subject Name: Machine Design & Industrial Drafting

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

Seat No.: _

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1		Short Questions	14
C	1	Define Leverage	
	2	Define Displacement Ratio	
	3	Why a boss is needed at a fulcrum of the lever.	
	4	List out different types of supports.	
	5	State the assumptions made in Euler's theory	
	6	State the normal stress theory	
	7	List out different types of keys.	
	8	Explain self locking of screw.	
	9	What is collar friction?	
	10	What is turn buckle?	
	11	Draw welding symbol for 1)plug weld 2)spot weld	
	12	Draw rivet heads for 1)pan head 2)countersunk head	
	13		
	14	J1 J	
Q.2	(a)	Define factor of safety. Why it is required?	03
	(b)	Short note on Slenderness ratio	04
	(c)	Derive expressions for slope and deflection at the free	07
		end of a cantilever beam of length L carrying a couple	
		moment M_0 at its free end.	
	(a)	OR Dariya Pankina's formula for buckling of column	07
Q.3	(c) (a)	Derive Rankine's formula for buckling of column. Explain stress in beams	03
Q.J	(b)	-	03
	(c)	Design a knuckle joint for a tie rod of a circular section to	07
	(C)	sustain a maximum pull of 70 KN.The ultimate strength	07
		of the material of the rod against tearing is 420 Mpa. The	
		ultimate tensile and shearing strength of the pin material	
		are 510 Mpa and 396 Mpa respectively. Determine the tie	
		rod section and pin section. Take FOS=6.	
		OR	
Q.3	(a)	Compare hollow shaft and solid shaft	03
	(b)	Define power screw and state it's applications.	04
	(c)	For a sleeve and cotter joint to resist a tensile load of 60	07
		KN whose all parts are made from same material with	
		following allowable stresses. σ_{t} =60Mpa, τ = 70 Mpa and	
		$\sigma_c = 125 \text{ Mpa}.$	

- 2)Diameter of the enlarge end of the rod and thickness of cotter
 - 3) Outside diameter of sleeve.

Q.4	(a)	What are the different types of screws threads used for power screw? Draw any two sketches of it.	03
	(b)	Explain maximum shear stress theory	04
	(c)	For a muff coupling which is used to connect to shafts transmitting 40 kw at 350 r.p.m. The allowable shear and crushing stresses may be taken as 40 Mpa and 80 Mpa respectively for shaft and key. For the muff allowable shear stress may be assumed as 15 Mpa. Calculate 1) Design for shaft	07
		2) Design for sleeve	
		OR	
Q.4	(a)	What are the advantages and disadvantages of threaded joints.	03
	(b)	Terminology of power screw.	04
	(c)	A 45 mm diameter shaft is made of steel with a yield strength of 450 Mpa.A parallel key of size 14 mm wide and 9 mm thick made of steel with yield strength of 340 Mpa is to be used. Find the required length of key, if the shaft is loaded to transmit the maximum permissible torque. Use maximum shear stress theory and assume a FOS=2.	07
Q.5	(a)	Give symbols for flatness, cylindricity, symmetry and straightness	03
	(b)	Explain hole based and shaft based limit system with neat sketch.	04
	(c)	A double riveted double cover butt joint in plates 30 mm thick is made with 35 mm diameter rivets at 100 mm pitch. The permissible stresses are $.\sigma_t$ =120Mpa, τ = 100 Mpa and σ_c =150 Mpa.Find the efficiency of joint, taking the strength of the rivet in double shear as twice than that of single shear.	07
		OR	
Q.5	(a)	Explain splines.	03
	(b)	What are the advantages and disadvantages of welded joints over riveted joints?	04
	(c)	Derive the expression for torque required to overcome collar friction.	07
