GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2017

Subject Code: 2140606 Date: 09/11/2017

Subject Name: Numerical and Statistical Methods for Civil Engineering

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

Q.1 (a) Prove that $(1 + \Delta)(1 - \nabla) = 1$

03

(b) Using Newton's forward formula, find the value of f(1.6) if

04

03

07

- x
 1
 1.4
 1.8
 2.2

 f(x)
 3.49
 4.82
 5.96
 6.5
- (c) Use the power method to find the largest eigen value and corresponding 07

eigen vector of the matrix $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

- Q.2 (a) Evaluate the integral $\int_{0}^{4} e^{x} dx$ by Simpson's 1/3 rule (take h = 1)
 - (b) Find the root of $\cos x xe^x = 0$ using bisection method correct to three decimal places
 - Use second order Runge-Kutta methos to solve $\frac{dy}{dx} = 3x + y$, given y=1.3 when x=1 to approximate y when x=1.2 taking h=0.1

OR

(c) If P is the pull required to lift a load W by means of a pulley block, find a linear law of the form P = mW + c connecting P and W using the following data:

10110 11115 0000	••			
P	12	15	21	25
W	50	70	100	120

Where P and W are taken in kg-wt. Compute P when W=150kg

Q.3 (a) Find the average wages for the construction of the building from the wages paid to different workers

Wages	100	200	300	400	500
No.of Workers	3	5	6	9	2

(b) Find standard deviation for the distribution giving 300 cars according to their selling days:

No. of	0-30	30-60	60-90	90-	120-	150-	180-
days				120	150	180	210
No. of	9	17	43	82	81	44	24
cars							

(c) A company has two plants to manufacture hydraulic machines. At plant 07

I manufactures 70% of the hydraulic machines and at plant II manufactures 30%. At plant I, 80% of hydraulic machines are rated standard quality and at plant II, 90% of hydraulic machines are rated standard quality. A machine is picked up at random and is found to be of standard quality. What is the chance that it has come from plant I?

OR

Q.3 (a) Find the median of the following data:

ma the median of the following data.									
Marks	<20	21-30	31-40	41-50	51-60	61-70			
No. of	5	15	20	6	6	8			
students									

- **(b)** Find the first four moments about mean for x = 5, 10, 8, 13, 4
- (c) Find the coefficient of correlation of price and demand of the commodity:

Price(Rs)	60	65	70	75	80	85	90	95	100
Demand(35	30	25	25	23	21	20	20	18
qty)									

- Q.4 (a) For the probability function $f(x) = \frac{k}{1+x^2}$, $-\infty < x < \infty$, find k
 - (b) Use the method of false-position to find the real root of $x^3 4x 9 = 0$ correct to three decimal places
 - (c) Obtain the values of f(8) and f(15) from the following data using Newton's divided difference formula:

х	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

OR

- Q.4 (a) If 3 of 12 car drivers do not carry driving license, what is the probability that a traffic inspector who randomly checks 3 car drivers, will catch 1 for not carrying driving license (use binomial dist.)
 - (b) Find a real root of $xe^x = 2$, correct to three decimal places, by using Newton-Raphson method
 - (c) By Gauss-Seidel method solve: 6x + 15y + 2z = 72, x + y + 54z = 110,27x + 6y z = 85, using diagonally dominant matrix form.
- **Q.5** (a) The probability that a person catch swine flu virus is 0.001. find the probability that out of 3000 persons (i) exactly 3, (ii) more than 2 persons will catch the virus. ($F(2; \lambda) = 0.42$)
 - (b) A room has three lamp sockets. From a collection of 10 light bulbs of which only 6 are good. A person selects 3 at random and puts them in the socket. What is the probability that the room will have light?
 - (c) Obtain the two regression lines from the following data:

х	6	2	10	4	8
y	9	11	5	8	7

OR

- **Q.5** (a) A random variable having the normal distribution with $\mu = 18.2$ and $\sigma = 1.25$, find the probabilities that it will take on a value (i) less than 16.5 (ii) between 16.5 and 18.8 (F(0.48) = 0.3156, F(-1.36) = 0.0869)
 - (b) Find the mode for the distribution of total runs scored by 100 players in 04

03

04

03

03

07

the tournament:

V									
Runs	0-50	50-100	100-150	150-	200-	250-300			
				200	250				
No. of	10	5	25	30	10	20			
players									

(c) For the following probability distribution

07

Tot the following producting distribution								
X	1	2	3	4	5			
f(x)	0.1	0.1	0.2	0.3	0.3			

(i) Find the mean and variance (ii) Find the distribution function
