GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018

Subject Code:2140606 Date:22/11/2018

Subject Name: Numerical and Statistical Methods for Civil Engineering **Total Marks: 70**

Time: 02:30 PM TO 05:00 PM

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 0.1 In usual notations show that $\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$
 - polynomial which cubic takes 04 f(0) = 4, f(1) = 1, f(2) = 2, f(3) = 11, f(4) = 32, f(5) = 71. Also find f(6)and f(2.5).
 - (c) Obtain by Power method the numerically largest eigen value of the matrix 07

$$A = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$$

- **Q.2** In how many different ways can the director of a research laboratory choose 2 03 chemists from among 7 applicants and 3 physicists from among 9 applicants?
 - A class consists of 6 girls and 10 boys. If a committee of three is chosen at random 04 from the class, find the probability that, (i) three boys are selected; (ii) exactly two girls are selected.
 - Solve the following system of equations using Gauss Jacobi iteration method: 07 $4x_1 + x_2 + x_3 = 2$; $x_1 + 5x_2 + 2x_3 = -6$; $x_1 + 2x_2 + 3x_3 = -4$
 - At checkout counter customers arrive at an average of 2.0 per minute. Find the probabilities that
 - At most 3 will arrive in any given minute (i)
 - (ii) At least 3 will arrive during an interval of 4 minutes
 - At most 10 will arrive during an interval of 6 minutes.
- 03 Q.3 (a) Using Regula – Falsi method determine the root of the equation $x \log x = 1.2$.
 - 04 **(b)** Use Euler's method to solve the initial value problem $\frac{dy}{dx} = \frac{x - y}{2}$ on the interval [0,3] with y(0) = 1. Compare the numerical solution with exact solution for the step size h = 0.25.
 - **07** Using Runge – Kutta fourth order method solve $\frac{dy}{dx} = y - \frac{2x}{y}$; y(0) = 1. Evaluate the value of y when x = 0.2 x = 0.4, take step size 0.2.

OR

(a) Using Taylor's series method, find y(1.1) correct to four decimal place, given by **Q.3** $\frac{dy}{dx} = xy^{\frac{1}{3}}$; y(1) = 1.

03

value of $\log_{\rho} 2$ correct to five significant digits.

(c) Use Newton's divided difference method to evaluate f(4) from the below data:

x:	0	1	2	3
f(x):	2	3	12	147

The runs scored by two batsmen A and B in 9 consecutive matches are given 03 **Q.4** (a) below. Find which batsman is more consistent?

Α	85	20	62	28	74	5	69	4	13	
В	72	4	15	30	59	15	49	27	26	

(b) Derive an iteration formula for $\sqrt[3]{N}$ and hence find $\sqrt[3]{58}$.

04

04

07

(c) Solve the following system of equation using Gauss – Seidel method:

5x + y - z = 10; 2x + 4y + z = 14; x + y + 8z = 20

07

Find the mean and standard deviation for the following data: **Q.4** (a)

03

Class Interval	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	6	14	10	8	1	3	8

(b) Find the equation of the cubic curve which passes through the points (0,-5), 04 (1,-10), (2,-9), (3,4), and (4,35).

Solve the following system of equations using Gauss elimination method with **07** partial pivoting. x + y + z = 7; 3x + 3y + 4z = 24; 2x + y + 3z = 16

Find the median from the following data. **Q.5** (a)

03

04

	<u># </u>									
Class lim	its	0-30	30-60	60-90	90-120	120-150	150-180			
Frequenc	y	8	13	22	27	18	7			

Compute the correlation coefficient between X and Y using the following data:

X	2	4	5	6	8	11
Y	18	12	10	8	7	5

(c) Following table gives the data on rainfall and discharge in a certain river. Obtain 07 the line of regression of Y on X

Rainfall(inch) X:	1.52	1 70	2.60	2.95	2.42
Kaliliali(liicii) A.	1.55	1./0	2.00	2.93	3.42
Discharge(1000cc) Y:	33.5	36.3	40.0	45.8	53.5

OR

Q.5 A train is moving at the speed of 30 m/s suddenly brakes are applied. The speed 03 of the train per second after t seconds is given by the following table:

Time(t) 0 5 10 15 20 25 30 30 24 19 Speed(v) 16 13 10

Apply Simpson's 3/8th rule to determine the distance moved by the train 30 sec.

(b) An unbiased coin is tossed 6 times. Find the probability of getting (i) exactly 4 04 heads, (ii) at least 4 heads.

At constant temperature, the pressure P and the volume V of a gas are connected (c)

by the relation PV^{γ} = constant. Find the best fitting equation of this form to the

following data and estimate V when P=4.

P(Kg. Sq. cm)	0.5	1.0	1.5	2.0	2.5	3.0
V(cc)	1620	1000	750	620	520	460
