Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(NEW) - EXAMINATION - SUMMER 2019

Subject Code:2140706 Date:15/05/2019

Subject Name: Numerical and Statistical Methods for Computer

Engineering

Time:02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

07

07

03

- Q.1 (a) Find the percentage error in the area of an ellipse when errors of 2% and 3 % are made in measuring its major and minor axes respectively.
 - (b) Using the bisection method, find a root of $f(x) = 2x 3\sin x 5 = 0$ correct up to three decimal places.
 - (c) Interpolate the function y = f(x) at point x = 1.5 using the following tabulated data.

X	1	2	3	4	5	6	7	8
У	1	8	27	64	125	216	343	512

- Q.2 (a) Using trapezoidal rule find the value of the integral $\int_{0}^{5} \frac{dx}{1+x}$ with h =1.
 - (b) Discuss false position method.
 - (c) Fit a second-degree parabola to the following data using method of least squares.

X	0	1	2	3	4
У	1	1.8	1.3	2.5	6.3

OR

(c) Find the cubic spline in the interval [0,2] for the following data:

1		L ' J		
X	0	2	4	6
у	1	9	41	41

- Q.3 (a) Apply Budan's theorem to find the number of roots of the equation $x^3 3x^2 4x + 13$ in the interval $\begin{bmatrix} -3, -2 \end{bmatrix}$ and $\begin{bmatrix} -2, -1 \end{bmatrix}$
 - (b) Find an iterative formula for \sqrt{N} , where N is a positive number and hence, find $\sqrt{12}$ correct up to four decimal places.
 - (c) Using Gauss Seidel method solve the following equations:

$$5x + y - z = 10$$

$$2x + 4y + z = 14$$
$$x + y + 8z = 20$$

OR

- **Q.3** (a) Prove that $(i)(1+\Delta)(1-\nabla)=1$ $(ii)\Delta\nabla=(\Delta-\nabla)$
 - (b) Find y(32) from the following table: 04

X	25	30	35	40
У	0.2707	0.3027	0.3386	0.3794

- **07** Solve $x^4 - 8x^3 + 39x^2 - 62x + 50 = 0$ by using Lin-Bairstow method up to third iteration $p_0 = q_0 = 0$
- Using Simpson's 1/3 rule, find $\int_{0.6}^{0.6} e^{-x^2} dx$, by taking n = 603 **Q.4** (a)
 - **(b)** Find the median of the following data: Age 10 20 30 40 50 60 70 greater than (in years) No. 230 218 200 165 123 73 28 8 of persons
 - **07 (c)** Solve $\frac{dy}{dx} = y - \frac{2x}{y}$, y(0) = 1 in the range $0 \le x \le 0.2$ using modified Euler's method taking h = 0.1.

- **Q.4** Write the formula for Runge-Kutta second order method. (a)
 - Use Lagrange's interpolation formula to find the value of y (10) for given 04 **(b)** data:

X	5	6	9	11
у	12	13	14	16

- Using Runge- Kutta method of fourth order, solve for y (0.1), **07** y (0.2) and y (0.3) given that $y' = xy + y^2$, y(0) = 1.
- Develop a C program for bisection method. **Q.5** (a)
 - 03 Two unbiased dice are thrown at random. Find the probability distribution 04 **(b)** of the sum of the numbers on them. Also find the mean and variance.
 - Calculate the coefficient of correlation for the following pairs of x and y: **07** (c) 19 21 20 17 26 28 26 27 \mathbf{X} 27 23 25 27 26 25 30 33

OR

- **Q.5** (a) Discuss type of Regression.
 - Find the regression coefficient of y on x for the following data: **(b)**

X	1	2	3	4	5
у	160	180	140	180	200

Given $\frac{dy}{dx} = \frac{1}{x+y}$, y(0) = 2, y(0.2) = 2.093307 (c)

y(0.4) = 2.1755, y(0.6) = 2.2493, find y (0.8) using Milne's Predictor Corrector method.

04

03

03

04