Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (OLD) - EXAMINATION - SUMMER 2017

Subject Code: 140702 Date: 08/06/2017

Subject Name: Operating System

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) (I) Define: Critical Section, Race Condition.
 - (II) Give the role of "Kernel" and "Shell" in UNIX.
 - (III) What is thread? Explain thread structure. **04**
 - (b) (I) What is Operating System? Give functions of Operating System.
 (II) Give the functions of following UNIX commands: grep, cat, chmod
 03
- Q.2 (a) Explain the use of Banker's Algorithm for Deadlock Avoidance with Example. 07
 - (b) Explain IPC Problem –Dining Philosopher Problem. 07

OR

- (b) What is Semaphore? Give the implementation of Producers-Consumers 07 problem using Semaphore.
- Q.3 (a) What is Scheduler? Explain Long term, Medium term and Short term scheduler 07 in detail.
 - (b) Consider the following set of processes with the length of the CPU-burst time of and Arrival time given in millisecond.

Process	<u> Arrival Time</u>	Burst Time
P1	0	4
P2	1	3
P3	2	1
P4	3	2
P5	4	5

Apply First Come First Serve process scheduling algorithm and calculate the following

- (I) Turn around Time for all processes and average turn around time.
- (II) Waiting time for each processes and average waiting time.

OR

- Q.3 (a) What is deadlock? List the conditions that lead to deadlock. How deadlock can be prevented?
 - (b) Consider the following set of processes with the length of the CPU-burst time 07 and Arrival time given in millisecond.

Process	<u>Arrival Time</u>	Burst Time
P1	1	7
P2	2	5
P3	3	1
P4	4	2
P5	5	8

Apply First Shortest Job First(Non-preemptive) process scheduling algorithm and calculate the following

- (I) Turn around Time for all processes and average turn around time.
- (II) Waiting time for each processes and average waiting time.

Q.4	(a)	What is Virtual Memory? Explain Demand Paging.	
	(b)	Explain the following allocation algorithms: 1) First-fit 2) Best-fit 3) Worst-fit.	07
		OR	
Q.4	(a)	What is fragmentation? What is the need of fragmentation? Explain the difference between internal and external fragmentation.	07
	(1.)	<u>c</u>	07
	(b)	Explain various Page Replacement Algorithms with example.	07
Q.5	(a)	Write a short note on: 1) Direct memory access(DMA), 2) Device controllers	07
_	(b)	Write a short note on multiprocessor and Distributed Operating System.	07
	` ′	OR	
Q.5	(a)	Explain First Come First Serve and Shortest Seek Time First Disk Scheduling	07
		algorithms with example.	
	(b)	Explain any two File Allocation Methods from the following:	07
		(I) Contiguous Allocation	
		(II) Linked Allocation	
		(III) Indexed Allocation	
