## **GUJARAT TECHNOLOGICAL UNIVERSITY**

BE - SEMESTER- IV(NEW) EXAMINATION - SUMMER 2015

Subject Code:2141005 Date:03/06/2015

**Subject Name: Signals and Systems** 

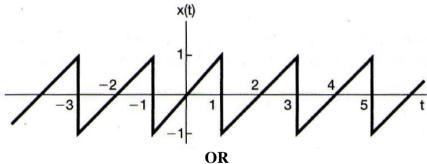
Time: 10:30am-1.00pm Total Marks: 70

**Instructions:** 

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) For each of the following systems

i) 
$$y(t) = x(t-2) + x(2-t)$$

ii) 
$$y(n) = nx(n)$$


determine which of properties "memoryless", "time invariant", "linear", "casual" holds and justify your answer.

- (b) Using the convolution integral to find the response y(t) of the LTI system with impulse response  $h(t) = e^{-\beta t}u(t)$  to the input  $x(t) = e^{-\alpha t}u(t)$  for  $\alpha = \beta$  and  $\alpha \neq \beta$ .
- Q.2 (a) Determine the Fourier transform of each of the following signals: 07

i) 
$$x(t) = \left[e^{-\alpha t} \cos \omega_0 t\right] u(t), \quad \alpha > 0$$

ii) 
$$x[n] = \left(\frac{1}{2}\right)^{-n} u[-n-1]$$

(b) Determine the Fourier series representations for the signal x(t) shown in figure below.



(b) Let x(t) be a periodic signal whose Fourier series coefficients are

$$a_k = \begin{cases} 2, & k = 0 \\ j(\frac{1}{2})|k|, & otherwise \end{cases}$$

Use Fourier series properties to answer the following questions:

- (a) Is x(t) real?
- (b) Is x(t) even ?
- (c) Is  $\frac{dx(t)}{dt}$  even?
- Q.3 (a) Consider a causal and stable LTI system S whose input x[n] and output y[n] are related through the second-order difference equation

$$y[n] - \frac{1}{6}y[n-1] - \frac{1}{6}y[n-2] = x[n].$$

**07** 

- Determine the frequency response  $H[e^{jw}]$  for the system S. i)
- Determine the impulse response h[n] for the system S. ii)
- **(b)** State and prove the following properties of the Fourier transform.

07

07

- Time Shifting
- ii) Time Scaling.

## OR

- Determine the z-transform for the following sequences. Sketch the pole-zero 07 Q.3 plot and indicate the ROC. Indicate whether or not the Fourier transform of the sequence exists.
  - i)  $\delta$ [n+5]

ii) 
$$\left(\frac{1}{4}\right)^n u[3-n]$$

- (b) Determine the Laplace transform and the associated region of convergence and 07 pole zero plot for each of the following functions of time:
  - $x(t) = e^{-2t}u(t) + e^{-3t}u(t)$
  - $x(t) = \delta(t) + u(t)$ ii)
- **Q.4** Using the long division method, determine the sequence that goes with the 07 following z-transforms:  $x[z] = \frac{1 - \left(\frac{1}{2}\right)z^{-1}}{1 + \left(\frac{1}{2}\right)z^{-1}}$  and x[n] is right sided.
  - (b) Explain with example the properties and importance of LTI Systems.

Consider a causal LTI system whose input x[n] and output y[n] are related by 0.4 07 the difference equation

$$y[n] = \frac{1}{4}y[n-1] + x[n].$$

Determine y[n] if  $x[n] = \delta[n-1]$ 

- (b) Using the Partial fraction method, determine the sequence that goes with the 07 following z-transforms:  $X(z) = \frac{3}{z - \frac{1}{4} - \frac{1}{6}z^{-1}}$  and x[n] is absolutely summable.
- 0.5 (a) List the properties of the region of convergence (ROC) for the z-Transform. 07
  - **(b)** Consider the signal 07

$$x[n] = \begin{cases} \left(\frac{1}{3}\right)^n \cos\left(\frac{\pi}{4}n\right), & n \le 0\\ 0 & n > 0 \end{cases}$$

Determine the poles and ROC for X[z].

Compute and plot the convolution y[n] = x[n]\*h[n] where 07 Q.5  $x[n] = \begin{cases} 1, & 3 \le n \le 8 \\ 0, & otherwise \end{cases}$  and  $h[n] = \begin{cases} 1, & 4 \le n \le 15 \\ 0, & otherwise \end{cases}$ 

- (b) Determine whether or not each of the following signals is periodic. If the signal **07** is periodic, determine its fundamental period.
  - $x(t) = \left[\cos(2t \frac{\pi}{3})\right]^2$  $x[n] = \cos(n^2 \frac{\pi}{8})$ i)
  - ii)

\*\*\*\*\*