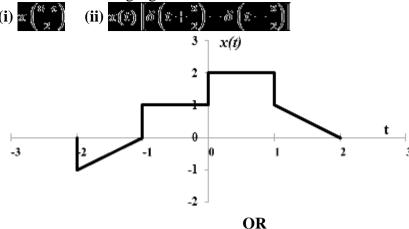
Seat No.:

Enrolment No.


Date: 08/06/2016

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- 4 (NEW SYLLABUS) EXAMINATION- SUMMER 2016

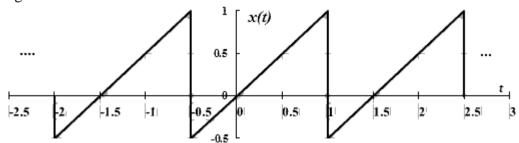
Subject Code:2141005 **Subject Name: SIGNALS AND SYSTEMS** Time: 10:30 AM to 01:00 PM **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. MARKS **Q.1** 14 **Short Questions** 1 Sketch the waveform of the following signal: $\mathbf{x}(\check{\mathbf{z}}) :: \mathrm{ra}(\check{\mathbf{z}} \cdot | \cdot \mathbf{1}) \cdot \cdot \cdot \mathrm{Aut}(\check{\mathbf{z}}) \cdot | \cdot \mathrm{ra}(\check{\mathbf{z}} \cdot \cdot \cdot \mathbf{1})$ If the response of LTI continuous time system to unit step signal is 2 then find the impulse response of the system. 3 Find inverse Laplace transform of "(1 - 10 200) Fill in the blanks: "An energy signal has _____ average power, whereas a power signal has _____ energy." 5 Find the output of an LTI system with impulse response (1) : (1) for the input $x(x) : : cxcs Ax \cdot | \cdot ssim Vx$. Evaluate the following integrals. (i) (2002-1-1) (2) (ii) [z²ð (z· · 6) dz Determine whether following signal is periodic or not. If it is periodic, find Determine z- transform and its ROC of with six with the same and its ROC of with the same and the same and its ROC of with the same and the same Write Fourier Transform of x(x):: situ(@w.x) If convolution is performed between two signals, and and with lengths and then what will be the length W of resulting signal? 11 Define Invertible system. **12** Let x | m | : : and Where $N \le 9$ is an integer. Determine the value of N, given that and y 4 :: 3, y 14 :: 0. Integration of unit impulse function over (via via vields _____ signal and differentiating a unit ramp function yields _____ signal. 14 Find the even and odd components of following signal: $\mathbf{x}(i)::\mathbb{1}\cdot \{\cdot i: \mathbf{i}\cdot \mathbf{i}: 3i^2\cdot \}\cdot 5i^3\cdot \{\cdot 9i^4$ 03 Q.2 (a) Categorize the following signals as an energy or power signal and find energy or power of the signal. $(0) \leq m_1 \cdot (mn) \cdot m = 0$ l () : Oilheerweisse **(b)** Consider a system S with input x[n] and output y[n] related by 04 $y|m| = x|m| \{g|m| \cdot | \cdot g|m \cdot \cdot 1|\}$ (i) If for all n, show that S is time invariant. (ii) If $\mathfrak{g}[\mathfrak{m}] :: \mathfrak{m}$, show that S is not time invariant. (iii)If $||\mathbf{x}|| = 1 + (-1)^{\infty}$, show that S is time invariant. (c) A continuous time signal is shown in figure: Sketch and label carefully 07

each of the following signals.

- (c) Determine whether each of them is (i) memoryless (ii) stable (iii) causal and (iv) linear
 - (1) y | m | : : 2 x | 2 m
 - (2) $y(\bar{x}) := x(\bar{x}/\bar{x})$ Justify your answers.
- Q.3 (a) State and prove a condition for a discrete time LTI system to be invertible.
 - **(b)** The following are the impulse responses of LTI systems. Determine whether each system is causal and/or stable. Justify your answers.
 - (i) [m] : (0.28) mu[m-1-2] (ii) [m(x) : cr25 m(-1-x)

Fourier Transform. Obtain Fourier Transform of

(c) Find the convolution of two signals (2) and (2) (2) (3)

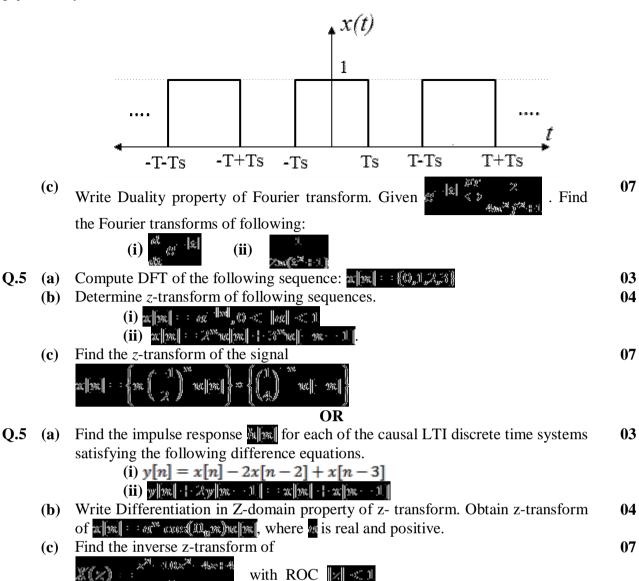

OR

- Q.3 (a) State and prove a condition for a discrete time LTI system to be stable.
 - (b) Evaluate the step response for the LTI systems represented by the following impulse responses:
 - (i) ¾(x): : ee (ii) ¾(m): : (· ·1) M(ud)m·(·2) · ·ud[m··3]
 - (c) Evaluate the discrete time convolution sum given below.

 | The convolution of the con
- Q.4 (a) Determine the output of the system described by the following differential equation with input and initial condition as specified.

(b) Write Differentiation in Time and Differentiation in Frequency property of

(c) Find the Fourier Series representation for the sawtooth wave depicted in below figure.



OR

- - (b) Determine the Complex Exponential Fourier Series representation for the square wave depicted in below figure.

04

04
