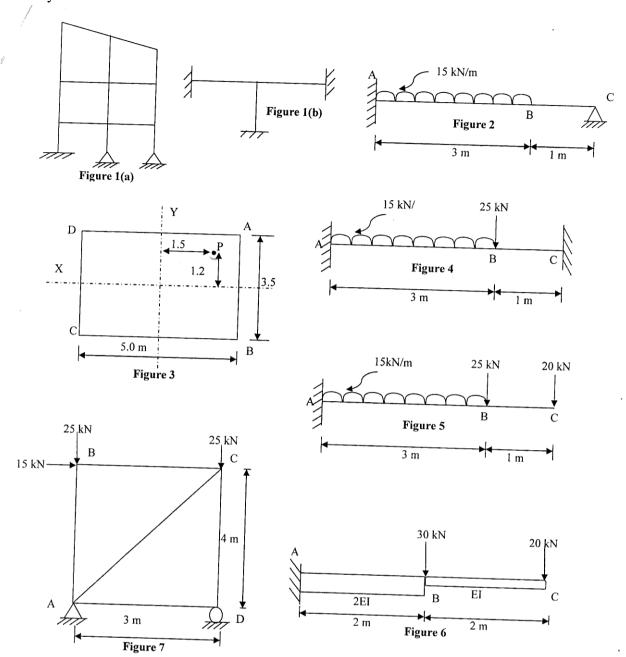
11	•	1
nttp://www.	omaratetm	tv com
ittp.// www.	Zujaraisiai	ay.com

Seat No.:	
-----------	--

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(New) EXAMINATION - SUMMER 2016


Subject Code:2140603 Date:06/06 Subject Name:Structural Analysis-I Time:10:30 AM to 01:00 PM Total Mar Instructions:		5/2016	
		ks: 70	
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
			MARKS
Q.1		Short Questions	14
V	1	Determine Structural indeterminacy of the structures shown in figure 1 (a).	
	2	Determine Structural indeterminacy of the structures shown in figure 1 (b).	
	3	Determine Kinematic indeterminacy of the structures shown in figure 1 (a).	
	4	Determine Kinematic indeterminacy of the structures shown in figure 1 (b).	
	5	Define Principle of superposition.	
	6	Define Maxwell's reciprocal theorem.	
	7	Define Crippling load.	
	8	Define Crushing load.	
	9	Define strain energy.	
	10	Define Structural indeterminacy	
	11	Define Kinematic indeterminacy	
	12	Define Proof Resilience	
	13	Define Column	
	14	Define strut	0.0
Q.2	\ /	Differentiate Plane frame and Grid	03
	(b)	Find reaction at support for the beam shown in figure 2 with using Consistence deformation method.	04
	(c)	A Raft footing is supporting a vertical load of 150 kN as shown in figure 3 . Compute the stresses at each corner of the pier. Draw stress distribution diagram also.	07
	(a)	OR Analysis the fixed beam as shown in figure 4 and draw the shear force.	07
	(c)	Analyses the fixed beam as shown in figure 4 and draw the shear force diagram, Bending moment diagram.	07
Q.3	(a)	Differentiate Conjugate beam and real beam	03
· ·	(b)	Derive an equation to determine deflection at center for the simply supported beam subjected to uniformly distributed load over an entire	04
	(c)	span. Calculate deflection at point B and C for the beam as shown in figure 5 using any method. Take $EI = 32000 \text{ kN.m}^2$.	07
0.2	()	OR 1. 1	0.2
Q.3	(a) (b)	State the theorems of moment area method. Show that for a three hinged parabolic arch carrying a uniformly distributed load over the whole span, the Bending moment at any section is	03 04

(c) Calculate slope and deflection at point C for the beam as shown in **figure 6** using conjugate beam method. Take $EI = 32000 \text{ kN.m}^2$.

07

aistu	uy.co	111	
Q.4	(a)	Calculate fixed end moments if left support of fixed beam is rotates clockwise by an amount ' θ '.	03
	(b)	Derive Euler's crippling load formula for the long column Fixed at both ends.	04
	(c)	Determine the strain energy stored in a truss loaded as shown in figure 7. Take $E = 200$ GPa and area of all members of truss is 400 mm^2 . OR	07
Q.4	(a)	Derive the equation of the strain energy stored in a member due to Torsion.	03
	(b)	An unknown weight falls through 100 mm on a collar rigidly attached to the lower end of a vertical bar, 3 m long and 3 cm in diameter. If the maximum instantaneous extension is known to be 3.5 mm, what is the corresponding stress and the value of unknown weight? Take $E = 2 \times 10^5 \text{ N/mm}^2$.	04
	(c)	Determine the ratio of strain energy stored in the simply supported beam AB of span 5m carries a 25 kN load at a central point and the same load uniformly distributed over its entire span.	07
Q.5	(a)	Define and Explain core and Kernel of a section with suitable example.	03
	(b)	A cylindrical vessel 2.5 m long and 400 mm in diameter with 8 mm thick plates is subjected to an internal pressure of 2.5 MPa. Calculate the change in length, change in diameter and change in volume of the vessel. Take E = 200 GPa and Poisson's ratio = 0.3 for the vessel material.	04
	(c)	A cast iron column of solid section has to transmit load of 450 kN. Calculate the diameter if the column is 5 meters long, both ends fixed. Use Rankine's formula. Taking $f_c = 350 \text{ N/mm}^2$, Rankine's constant $\alpha = 1/2000$ and factor of safety is 3.	07
Q.5	(a)	Write advantages of Three Hinge parabolic arch over a Simply supported beam.	03
	(b)	The cables of a suspension bridge of 100m span are suspended from piers which are 12m and 6m respectively above the lowest point of the cable. The load carried by each cable is 1 KN/m of span. Find:	04
	(c)	(i) horizontal pull in the cable at the pier (ii) Maximum Tension in the cable at the pier. A cylindrical chimney 60 m high of varying circular section is 6 m external diameter at Bottom and 3 m diameter at top. The internal diameter of chimney is 2.5m. It is subjected to a horizontal wind pressure of 1400N/mm². If the coefficient of wind pressure is 0.7. The self-weight of Chimney 16000 kN. Find the maximum & minimum stresses at the base of the section.	07
