GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - SUMMER 2019

Subject Code: 2150703	Date: 06/06/2019
-----------------------	------------------

Subject Name: Analysis and Design of Algorithms

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

3.	Figu	ures to the right indicate full marks.	MADIZO
			MARKS
Q.1	(a)	What is an algorithm? How it differ from flowchart?	03
•	(b)	Give difference of dynamic programming and divide-and-	04
	` /	conquer method.	
	(c)	Explain Asymptotic notation. Arrange the growth rate of 2 ⁿ , n ² ,	07
	(0)	1, log n, n logn, 3 ⁿ and n in increasing order of growth.	U7
Ω_{2}	(0)	Differentiate greedy and dynamic programming.	03
Q.2	(a)	Find out the Θ -notation for the function: $f(n)=27n^2+16n$.	03 04
	(b)	What is recurrence? Explain recursion-tree method with suitable	04 07
	(c)	<u>*</u>	U/
		example. OR	
	(a)		07
	(c)	Write the Master theorem. Solve following recurrence using it.	07
0.2	(2)	(i) $T(n)=9T(n/3)+n$ (ii) $T(n)=3T(n/4)+n$ lgn	03
Q.3	(a)	Use Iteration method to solve recurrence $T(n) = T(n-1) + 1$, here	03
	(b)	$T(1) = \Theta(1)$. Explain general characteristics of gready algorithms	04
	(b)	Explain general characteristics of greedy algorithms.	
	(c)	Using dynamic programming find out the optimal sequence for the matrix chain multiplication of A_{4x10} , B_{10x3} , C_{3x12} , D_{12x20} and	07
		E _{20x7} matrices. A_{4x10} , B_{10x3} , C_{3x12} , D_{12x20} and	
		OR	
Q.3	(a)	Write the best and worst running time of Insertion sort	03
Q.S	(a)	algorithm. Why it differ?	03
	(b)	What are the steps for dynamic programming? Explain principal	04
	(0)	of optimality.	VŦ
	(c)	Determine LCS of $\{1,0,0,1,0,1,0,1\}$ and $\{0,1,0,1,1,0,1,1,0\}$	07
Q.4	(c) (a)	What is string-matching problem? Define valid shift and invalid	03
Q.-	(a)	shift.	03
	(b)	Define P, NP, NP-complete and NP-hard problems.	04
	(c)	Explain 0/1 knapsack using suitable example.	07
	(0)	OR	07
Q.4	(a)	Write pseudo-code for Naïve-String-Matching algorithm.	03
•	(b)	Define spanning tree and MST. How Krushkal's algorithm is	04
	()	different from Prim's algorithm.	-
	(c)	Explain fractional knapsack problem with example.	07
Q.5	(a)	Define graph, complete graph and connected graph.	03
Q	(b)	Differentiate BFS and DFS.	04
	(c)	Write and explain Dijkastra algorithm with example.	07
	(-)	OR	~ .
Q.5	(a)	Explain "P = NP?" problem.	03
~·-	(b)	Write just steps for Backtracking and Branch-and-Bound	04
	(-)	algorithms.	-
	(c)	Explain travelling salesman problem. Prove that it is NP	07
	\-/	complete problem.	
