GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) - EXAMINATION - SUMMER 2016

Subject Code: 2151908 Date: 17/05/2016

Subject Name: Control Engineering

Time:02:30 PM to 05:00 PM Total Marks: 70

Instructions:

Seat No.: _

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Derive transfer function of room heating system with usual notations. 07
 - (b) Draw the analogous electric circuit considering Force-Voltage analogy for the mechanical system shown in figure 1 where x_i is the input displacement, x_0 is the output displacement, y is the displacement of the spring, D_1 , D_2 are the viscous damping coefficients and K_1 , K_2 are the compliances of the springs. Also obtain the transfer function for this mechanical system.

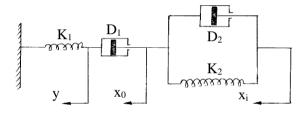
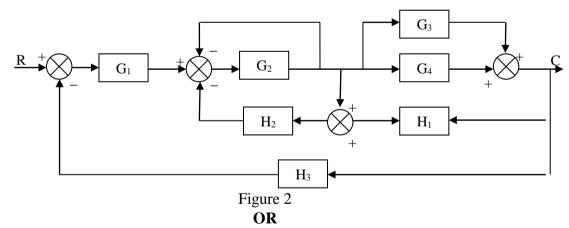



Figure 1

- Q.2 (a) Derive unit-step response for first-order control system. Discuss salient 07 features of the response curve and error curve with a neat sketch.
 - (b) Determine the overall transfer function for the block diagram shown in figure 2 using block diagram reduction.

(b) Determine the transfer function by the Mason's Gain formula for the Signal Flow Graph shown in figure 3.

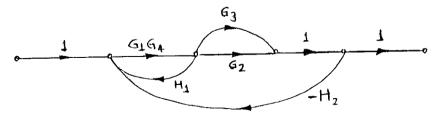


Figure 3

07

Q.3 (a) For the system shown in figure 4, determine the value of gain K and velocity-feedback constant K_h so that the maximum overshoot in the unit-step response is 0.2 and the peak time is 1 sec. With these values of K and K_h , obtain the rise time and settling time for 2% criterion. Assume that J = 1 kg- m^2 and B = 1 N-m/rad/sec.

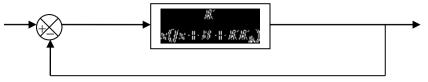


Figure 4

(b) Determine the stability of a system whose overall transfer function is given below:

If the system is found unstable, how many roots it has with positive real part?

OR

- Q.3 (a) Derive unit impulse response for a generalized second order system for underdamped, critically damped and overdamped cases with usual notations.
 Also derive the relation of maximum overshoot (for underdamped case).
 - (b) Discuss stepwise procedure of plotting the root-locus for a given open-loop transfer function.
- Q.4 (a) Explain the schematics to achieve Hydraulic Proportional-Plus-Derivative Control action with a neat sketch in brief. Draw block diagram and obtain transfer function for the same.
 - (b) Explain Force-Distance type Pneumatic Proportional controller and derive 07 transfer function for it.

OR

- Q.4 (a) Draw a neat sketch of generalized hydraulic control system. Explain the elements of hydraulic control system in brief.
 - (b) Explain working of schematics to achieve Pneumatic PID controller in brief with a neat sketch. Draw block diagram and obtain transfer function for the same.
- Q.5 (a) Explain the concept of state used in modern control theory and briefly explain the state space representation of Mechanical system.
 - (b) Explain the terms Gain Margin and Phase Margin related to Frequency or response analysis of Control Systems.

OR

- Q.5 (a) Discuss the advantages of State Space analysis over Classical Technique used for control systems analysis. Also explain the state space representation of second order differential equation.
 - (b) Briefly discuss performance specifications of frequency response analysis for linear controls systems.
