Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) - EXAMINATION – SUMMER 2018

Subject Code:2151908 Date:09/05/2018

Subject Name: Control Engineering

Time:02:30 PM to 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	Define transfer function. List important characteristics of transfer function.	03
	(b)	What is a time varying system? Give suitable examples.	04
	(c)	How is it different from the time invariant system? Obtain the transfer function $Y(s)/U(s)$ of the system shown in figure 1. The displacement input is $u(t)$.	07
Q.2	(a)	Find transfer function equation for simple mass-spring-dashpot system with usual notation.	03
	(b)	Tabulate the various analogous elements in mechanical and electrical systems.	04
	(c)	Derive expressions of rise time and peak time for a second order under damped system excited by a unit step input.	07
		OR	
	(c)	Define following terms in context with the transient response specifications of second order system using neat sketch: Delay time, Rise time, Peak time, Maximum overshoot, settling time.	07
Q.3	(a)	What does a block diagram represent? Explain it in detail.	03
	(b)	List its salient characteristics of Block Diagram. Explain the following: Summing point, takeoff point.	04
	(c)	Reduce block diagram as shown in figure 2 by using block diagram reduction rules and obtain overall transfer function. OR	07
Q.3	(a)	What is signal flow graph? Can the gain formula be applied between any two nodes of a SFG?	03
	(b)	Compare block diagram representation versus Signal flow graph representation.	04
	(c)	For the signal flow graph of a multiple loop system shown in figure 3, determine $C(s)/R(s)$ using Mason's gain formula.	07
Q.4	(a)	Enlist limitations of Routh's stability criterion.	03
	(b)	Using R-H criterion determine the stability of the system whose characteristic equation is given by:	04
	()	$s^{5} + 1.5s^{4} + 2s^{3} + 4s^{2} + 5s + 10 = 0$	07
	(c)	Draw root locus diagram for the system with transfer function,	07

G(s). H(s) = $\frac{k}{s(s+3)(s+6)}$. Obtain value of k when $\zeta = 0.6$

from root locus. Determine the value of k for stability and critical damping.

OR

- Q.4 (a) State 'Angle condition' and 'Magnitude condition' of root locus method.
 - (b) Determine the stability of the system represented by the characteristic equation by means of the R-H Criterion.
 Also find root lying in right half of s-plane.

$$s^6 + 3s^5 + 5s^4 + 9s^3 + 8s^2 + 6s + 4 = 0$$

(c) The open loop transfer function of unity feedback control system is given by:

G(s). H(s) =
$$\frac{k}{(s+1)(s+10)(s+30)}$$
. Draw the root locus.

Determine the value of k for which the system becomes critically damped and also the value of k for which the system become unstable.

- Q.5 (a) Compare hydraulic control system with pneumatic control system in detail.
 - (b) With the help of necessary diagram, explain Pneumatic nozzle flapper amplifier.
 - (c) Draw the schematic diagram of Hydraulic PID controller. **07** Explain its working and derive its transfer function.

OR

- Q.5 (a) State the advantages of state-space representation over conventional control system analysis method.
 - (b) Explain the following terms: (i) State (ii) State variables (iii) 04
 State-space (iv) state transition matrix
 - (c) Draw the schematic diagram of Pneumatic PI controller. **07** Explain its working and derive its transfer function.

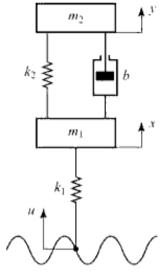


Figure.1

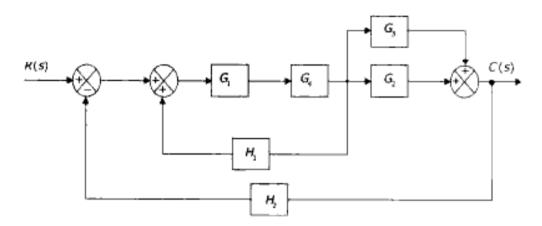


Figure. 2

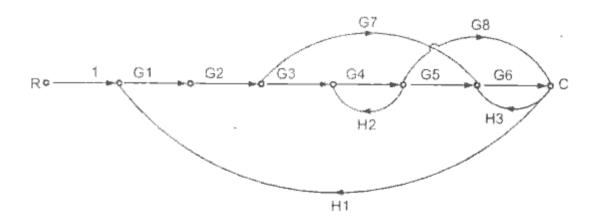


Figure.3