Seat No.: Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V(New) • EXAMINATION – WINTER 2016

Subject Code:2151908 Date:30/11/2016

Subject Name: Control Engineering

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

Q.1 Short Questions

14

- 1 Feedback is sometimes used to improve the sensitivity of a control system (True/False).
- 2 Nonlinear elements are sometimes intentionally introduced to a control system to improve its performance (True/False).
- 3 Define the transfer function. Why initial conditions are assumed zero?
- 4 Define signal flow graph.
- 5 What does the arrow on the branch of a Signal Flow Graph represent?
- 6 Define Maximum overshoot.
- 7 What is Parabolic-Function Input?
- 8 Define Routh's stability criterion.
- **9** What is Frequency Response?
- 10 In a 4/3 Direction control valve 4 stands for ____ and 3 stands for ?
- 11 What does FRL stands for in a Pneumatic system.
- **12** Define: Self loop
- **13** What is root locus?
- **14** Define Reference input with example.
- Q.2 (a) Derive the Analogous relationship between Mechanical and Electrical system based on Force-Current analogy.
 - (b) Obtain the Transfer function C/R from the signal flow graph as shown in **figure1**
 - (c) Obtain the overall transfer function of the system whose block diagram is as given in **figure 2** using block diagram reduction technique.

ΛR

- (c) Obtain Differential Equation for the mechanical system shown in **figure3**. Also obtain analogus circuit using Force-Voltage analogy.
- Q.3 (a) Discuss the effect of time constant on 1st order system response for unit step input.
 - (b) Discuss the effect of damping on the position of closed loop poles of the 2nd order system with diagram.
 - (c) Ina mechanical vibratory system when 2N of force (step input) is applied to the system, the mass oscillates as shown in **figure 4.** Determine the values of M, B and K of the system from this response curve. The displacement is measured from equilibrium position.

OR

Q.3 (a) Draw generalized unit step response for 2nd order system and define following: Rise time, Delay time, Settling time.

07

07

	(b)	A close loop system is characterized by the following transfer function, $s^4+5s^3+5s^2+4s+K=0$. Determine the range of K for which	04
		the system is stable.	
	(c)	Draw root locus diagram for the system with transfer function,	07
		G(s) H(s) = $\frac{K}{s(s+5)(s+10)}$.	
Q.4	(a)	List the basic elements of a Hydraulic circuit. Explain any one in brief.	03
	(b)	Explain Hydraulic Integral Control and derive its transfer function.	04
	(c)	Draw the schematic diagram of Pneumatic PI controller. Explain its	07
		working and derive its transfer function.	
		OR	
Q.4	(a)	Write the comparison between a Pneumatic system and Hydraulic system.	03
	(b)	With the help of necessary diagram, explain Pneumatic nozzle-flapper amplifier.	04
	(c)	Draw the schematic diagram of Hydraulic PID controller. Explain its working and derive its transfer function.	07
Q.5	(a)	_	03
	(b)	· · · · · · · · · · · · · · · · · · ·	04
	()	(i) State (ii) State variables (iii) State-space (iv) state transition matrix.	
	(c)	Obtain the state space representation of system as shown in figure 5	07
	` '	OR	
Q.5	(a)	For an RLC circuit, Derive the state model.	03
-	(b)		04
	(c)	Differentiate between open loop and close loop control systems.	07
	` ′		

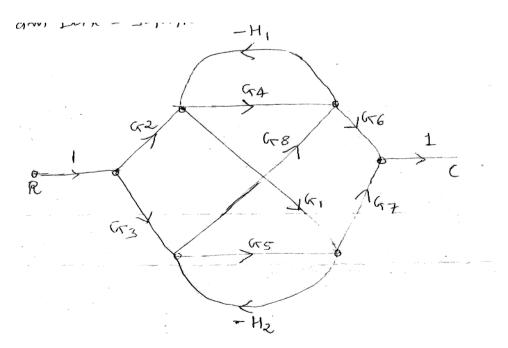


Figure1

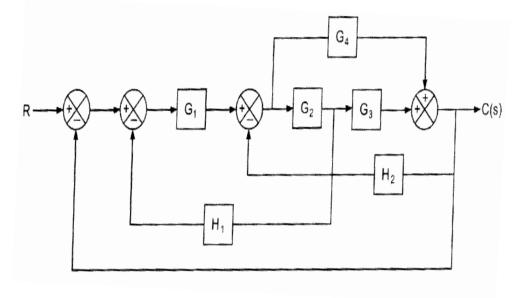


Figure 2

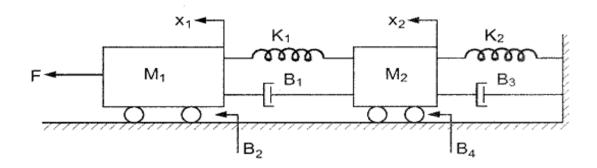
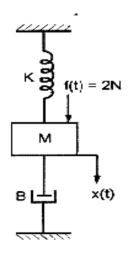



Figure 3

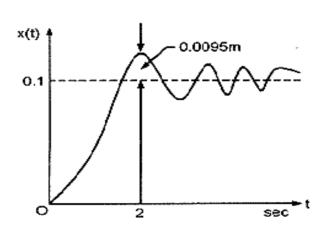


Figure 4

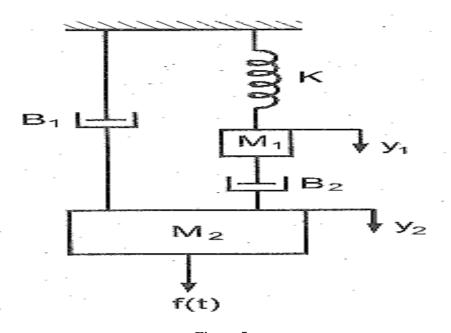


Figure 5
