
Subject Code: 2150909

Date:10/12/2015

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

BE – SEMESTER – V (NEW) EXAMINATION – WINTER 2015

| Subject Name: Control System Engineering Time:10:30am to 1:00pm Instructions:  1. Attempt all questions. 2. Make suitable assumptions wherever necessary. |            | s: 70                                                                                                                                                                                                                                 |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| s                                                                                                                                                         |            | 3. Figures to the right indicate full marks.                                                                                                                                                                                          |          |
| <b>Q.1</b>                                                                                                                                                | (a)        | What is control system? Mention the difference between the open loop and close loop control system.                                                                                                                                   | 07       |
|                                                                                                                                                           | <b>(b)</b> | Determine the overall transfer function for the system using block diagram reduction rules whose block diagram is shown in figure- 1.                                                                                                 | 07       |
| Q.2                                                                                                                                                       | (a)<br>(b) | Explain transfer function and write its advantages and dis advantages Define following terms in relation of signal flow graph: source node, sink node, chain node, forward path, feedback path, self-loop and non-touching loops.  OR | 07<br>07 |
|                                                                                                                                                           | <b>(b)</b> | For the mechanical system shown in figure -2 obtain F-V analogous electrical network.                                                                                                                                                 | 07       |
| Q.3                                                                                                                                                       | (a)        | Explain Type 0, Type 1 and Type 2 control system. Derive equation for the steady state error of the Type 2 control system for step, ramp and parabolic input.                                                                         | 07       |
|                                                                                                                                                           | <b>(b)</b> | characteristic equation using Routh's method.  OR                                                                                                                                                                                     | 07       |
| Q.3                                                                                                                                                       | (a)        | The closed loop transfer function of a given second order system is given by  Determine damping ratio, natural frequency, delay time, rise time, settling time, and peak overshoot.                                                   | 07       |
|                                                                                                                                                           | <b>(b)</b> | Explain correlation between time domain and frequency domain.                                                                                                                                                                         | 07       |
| Q.4                                                                                                                                                       | (a)        | Define the following terms: Gain margin, phase margin, bandwidth, resonant peak, resonant frequency and gain cross over frequency.                                                                                                    | 07       |
|                                                                                                                                                           | <b>(b)</b> | A unity feedback control system has OR                                                                                                                                                                                                | 07       |
| Q.4                                                                                                                                                       | (a)        | Explain with necessary equation and diagram step response of a second order control system.                                                                                                                                           | 07       |
|                                                                                                                                                           | <b>(b)</b> | For a unity feedback control system $\mathbb{S}(s) := \frac{8000}{\pi^2 \left(\pi + 200\right) \left(\pi + 200\right)}$ sketch the bode plot.                                                                                         | 07       |
| Q.5                                                                                                                                                       | (a)        | State and explain nyquist stability criteria                                                                                                                                                                                          | 07       |
|                                                                                                                                                           | <b>(b)</b> | Construct the polar plot for the transfer function.                                                                                                                                                                                   | 07       |
| Q.5                                                                                                                                                       | (a)        | Find transfer function of $\begin{bmatrix} x & 1 & x & x & x & x & x & x & x & x &$                                                                                                                                                   | 07       |
|                                                                                                                                                           | <b>(b)</b> | Derive the transfer function of a armature controlled D.C. motor                                                                                                                                                                      | 07       |
|                                                                                                                                                           |            |                                                                                                                                                                                                                                       |          |



g.2(b) or.  $| \times 3 | \times 2$   $| \times 2$