Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY PE SEMESTED V (NEW) EXAMINATION WINTED 2018

		BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2018		
Su	bject	Code:2151903 Date:16/11	/2018	
Su	bject	Name:Fluid Power Engineering		
Time: 10:30 AM TO 01:00 PM Total Ma				
Inst	tructio	ons:		
		Attempt all questions.		
		Make suitable assumptions wherever necessary.		
	3.	Figures to the right indicate full marks.	MARKS	
0.1	()			
Q.1	(a)	Draw general layout mentioning essential components of hydro power plant.	03	
	(b)	Explain following terms: Hydraulic efficiency and Priming.	04	
	(0)	Explain following terms. Trydraune efficiency and I finning.	04	
	(c)	Prove that the velocity of the curved symmetric moving plate is one third of	07	
	(C)	jet velocity for maximum efficiency when jet strikes at the center of curved	07	
		plate.		
Q.2	(a)	Compare impulse and reaction hydraulic turbines.	03	
	(b)	Explain principle of jet propulsion.	04	
	(c)	A jet of water having a velocity of 15 m/sec strikes a curved vane which is	07	
		moving with a velocity of 5 m/s in the same direction as that of jet at inlet.		
		The vane is so shaped that the jet is deflected through 135°. Diameter of the		
		jet is 100 mm. Assuming the vane to be smooth, find (i) force exerted by the		
		jet on the vane in the direction of motion (ii) work done (iii) efficiency.		
		Assume symmetrical balde.		
		OR		
	(c)	Explain phenomenon of surging and stalling in an axial flow compressor	07	
		with neat sketch.		
Q.3	(a)	List factors affecting performance of hydraulic turbine and draw main characteristic curve of impulse turbine.	03	
	(b)	Explain with neat sketch the functions of main components of Pelton	04	
	(6)	turbine.	04	
	(c)	A Kaplan turbine develops 6000 kW power with a head of 5 m. Hub	07	
	(0)	diameter of runner is 0.33 times the outer diameter of runner. Find the	07	
		diameter of the runner, rotational speed of turbine. Take the speed ratio 2.5,		
		flow ratio 0.6 and overall efficiency 90%.		
		OR		
Q.3	(a)	What is draft tube? Where and why it is used?	03	
	(b)	Define and explain significance of unit quantities for hydraulic turbine.	04	
	(c)	A Pelton wheel is to be designed for following specifications: shaft power	07	

OR						
Q.3	(a)	What is draft tube? Where and why it is used?	03			
	(b)	Define and explain significance of unit quantities for hydraulic turbine.	04			
	(c)	A Pelton wheel is to be designed for following specifications: shaft power	07			
		= 11800kW, Head = 400m, Speed = 700 rpm, Overall efficiency = 85%, jet				
		diameter				
		is not to exceed one sixth of the wheel diameter. Determine wheel diameter, number of jet required and diameter of the jet. Take coefficient of velocity = 0.98 and speed ratio =0.45.				
Q.4	(a)	Define different efficiencies of centrifugal pump.	03			
_	(b)	What is cavitation? What are its effects?	04			

1 44 /	/	1	
nttn:/	/ 13/13/13/ 011	iaratetiid	\mathbf{v} com
μ_{μ}	/www.gu	jaiaisiaa	y.COIII

	(c)	A centrifugal pump is running at 1000 rpm. The outer vane angle of the impeller is 45° and velocity of flow at outlet is 2.5 m/s. The discharge	07
		through the pump is 200 liters/s when the pump is working against a total	
		head of 20 m. if the manometric efficiency of the pump is 80 %, determine	
		diameter of impeller and width of impeller at outlet.	
		OR	
Q.4	(a)	Explain needs of air vessels. Where are they located?	03
	(b)	Why multi staging is required in reciprocating air compressor? What are its advantages?	04
	(c)	Explain the effect of blade shape of impellers on performance of Centrifugal compressor. Also classify the blades based on curvature.	07
Q.5	(a)	Define: slip factor, isentropic efficiency and work input factor.	03
	(b)	What is pre - whirl? Explain the effect of Pre-whirl in centrifugal compressor.	04
	(c)	Explain with neat sketch Hydraulic Ram.	07
	` '	OR	
Q.5	(a)	Explain working principle of hydraulic intensifier.	03
	(b)	A jet of water having a velocity 20 m/s strikes on a series of vanes moving with a velocity 8 m/s. the jet makes an angle of 30° with the direction of motion of vanes when entering and leaves at an angle of 150° with the direction of motion. Sketch velocity triangle and measure inlet and outlet vane angles.	04
	(c)	Explain hydraulic torque converter with neat sketch	07
