GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER - V (NEW) EXAMINATION - WINTER 2015

Subject Code: 2150609 Date:14/12/ 2015

Subject Name: Soil Mechanics

Time:10:30am to 1:00pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) The following data were recorded while performing the compaction test:Water content (%): 7.71 11.5 14.6 17.50 19.50 21.25
 Bulk density (kN/m³): 17.55 19.50 21.0 20.55 20.30 19.80
 Plot the MDD-OMC curve and obtain the optimum water content and maximum dry density. Also plot zero air voids curve. Take G = 2.66
 - (b) State the different types of foundation and mention the factors affecting the 07 selection of type of foundation.
- Q.2 (a) Compare the 'Direct Shear Test' and 'Triaxial Compression Test'.
 - (b) Determine the shearing strength parameters from the Direct Shear Test results given below. The proving ring constant is 0.45 kg/Div.

<u>Sr. No</u> .	Normal Stress (kg/cm ²)	Shear Force (Div.)
1.	1.0	110
2.	2.0	140
3.	3.0	200

What would be shearing strength at the normal stress of 10 kg/cm²?

OR

- (b) Explain the different Triaxial tests which can be performed with the different 07 drainage conditions.
- Q.3 (a) With the help of Terzaghi's Spring Analogy concept, define and explain the 07 phenomenon of consolidation.
 - (b) (i) Differentiate between 'compression index' and 'swell index' in a void ratio 02 versus log p curve of the consolidation test.
 - (ii) Differentiate between infinite and finite slopes. How will you calculate the factor of safety for an infinite slope made of cohesive soil?

OR

Q.3 (a) Define the term coefficient of consolidation and explain the 'square-root time 07 fitting method' for determination of the same.

- (b) (i) During consolidation test, the void ratio decreases from 0.80 to 0.50 under the stress increment of 2.0 kg/cm² to 4.0 kg/cm². Compute coefficient of compressibility & coefficient of volume compressibility.
 (ii) Determine the factor of safety against sliding for a slip surface passing through the toe of a finite slope of height of 11m and slope angle of 1V:1.5H has c= 15 kPa, Φ = 32° and γ= 20 kN/m³. The radius & the central angle of the slip circle is 17.4 m & 87° respectively. Take ΣN = 1902.74 kN and ΣT = 941.15 kN. Use Swedish slip cirle method.
 Q.4 (a) (i) A long natural slope in C-Φ soil is inclined at 12° to the horizontal. The water table is at the surface and seepage is parallel to the slope. If a plane slip has developed at a depth of 4.0 m, determine the factor of safety. Take C = 10 kPa, Φ = 20° & γ_{sat} = 20 kN/m³.
 - (ii) For a point load of 150 kN, compute vertical stress at 2.0m depth along the axis by using Boussinesq's and Westergaard's theories. Consider Poisson's ratio = 0.0
 - (b) Explain construction of Newmark's Influence Chart and its applications. 07
- Q.4 (a) (i) Briefly describe the method of slices for finite slope stability analysis for C- 05 Φ soil.
 - (ii) Point out the differences between Boussinesq's and Westergaard's theories. 02
 - **(b)** For a point load of 150 kN acting at the ground level, compute the vertical **07** stresses developed on a horizontal plane located at 1.0m depth. Use Boussinesq's theory & compute the stresses for radial distances of 0.0m, 1.0m, 2.0m & 3.0m.
- Q.5 (a) Briefly explain the conditions of Active earth pressure, Passive earth pressure 07 and Earth pressure at rest.
 - (b) A retaining wall of height 8.0 m has a horizontal sandy soil as a backfill (C=0.0, $\Phi = 30^{\circ}$, $\gamma_t = 18 \text{ kN/m}^3$). A surcharge of 50 kPa is acting over the backfill. Draw the active earth pressure distribution and calculate the total active thrust acting on the wall.

OR

- Q.5 (a) Explain Culmann's graphical method for determination of active earth pressure. 07
 - (b) A retaining wall of height 6.0 m has a horizontal backfill with C=30 kPa, $\Phi = 07$ 20° & $\gamma_t = 20 \text{ kN/m}^3$. Compute the total passive thrust acting on the wall.
