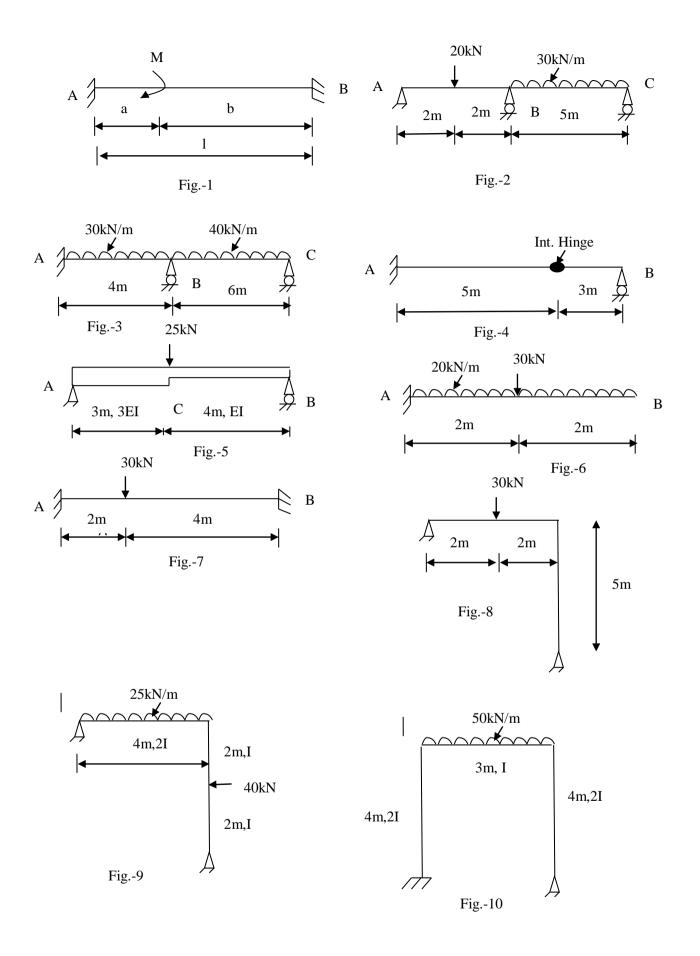
Seat No.: \_ Enrolment No.\_

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

BE - SEMESTER-V(New) • EXAMINATION - WINTER 2016

Subject Code:2150608 Date:22/11/2016

Subject Name:Structural Analysis-II


Time: 10:30 AM to 01:00 PM **Total Marks: 70** 

## **Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

|            |            |                                                                                                                         | MARKS       |
|------------|------------|-------------------------------------------------------------------------------------------------------------------------|-------------|
| <b>Q.1</b> |            | Answer the following:                                                                                                   | 14          |
|            | 1          | Explain stiffness.                                                                                                      |             |
|            | 2          | Differentiate between carry over factor and distribution                                                                |             |
|            | •          | factor.                                                                                                                 |             |
|            | 3          | Define flexibility.                                                                                                     |             |
|            | 4          | In a fixed beam of length L if one end sinks by $\delta$ , what are the moments and reactions induced at both the ends. |             |
|            | 5          | Explain influence line diagram for a beam.                                                                              |             |
|            | 6          | Write Castigliano's first theorem.                                                                                      |             |
|            | 7          | Explain rolling loads.                                                                                                  |             |
|            | 8          | Differentiate between maximum bending moment at a section                                                               |             |
|            |            | and absolute maximum bending moment anywhere in the                                                                     |             |
|            |            | section due to rolling loads.                                                                                           |             |
|            | 9          | Write Muller-Breslau's principle.                                                                                       |             |
|            | 10         | In a fixed end beam AB of length L, if end B rotates by an                                                              |             |
|            |            | angle $\theta$ , what are the reactions and moments obtained at both                                                    |             |
|            |            | the ends.                                                                                                               |             |
|            | 11         | Draw ILD of a moment at fixed end for a cantilever beam AB                                                              |             |
|            |            | having length 4m.                                                                                                       |             |
|            | 12         | Why stiffness method is more suitable for computer                                                                      |             |
|            | 10         | programming?                                                                                                            |             |
|            | 13         | Write fixed end moments for beam shown in fig1.                                                                         |             |
| $\Omega$   | 14         | Explain strain energy with illustration.  Explain causes of side-sway in plane frame with illustrations.                | 03          |
| Q.2        | (a)<br>(b) | Analyse the beam shown in fig2 by moment distribution                                                                   | 03          |
|            | (D)        | method. Take EI=constant.                                                                                               | V <b>-7</b> |
|            | <b>(c)</b> | Analyse the beam shown in fig3by slope-deflection method                                                                | 07          |
|            |            | and draw BMD. Take EI=constant.                                                                                         |             |
|            |            | OR                                                                                                                      |             |
|            | <b>(c)</b> | Analyse the beam shown in fig3 by stiffness method and                                                                  | 07          |
| 0.2        | (-)        | draw BMD.                                                                                                               | 02          |
| Q.3        | (a)        | Obtain slope-deflection equations for the beam shown in fig2.                                                           | 03          |
|            | <b>(b)</b> | Calculate the stiffness matrix for the beam shown in fig2.                                                              | 04          |
|            | (c)        | For a propped cantilever beam AB, fixed at A and having                                                                 | 07          |
|            |            | roller support at B, of span 5m, draw ILD for R <sub>B</sub> . Calculate                                                |             |
|            |            | ordinates of ILD at every 1m interval.                                                                                  |             |
|            |            | OR                                                                                                                      |             |
| <b>Q.3</b> | (a)        | Discuss the criteria to determine the absolute maximum                                                                  | 03          |
|            |            | bending moment and its location for a simply supported beam                                                             |             |
|            |            | under rolling concentrated loads.                                                                                       |             |
|            | <b>(b)</b> | Draw ILD for R <sub>A</sub> and M <sub>A</sub> for a beam shown in fig4                                                 | 04          |

| (c)        | Three point loads 50 kN, 70 kN and 90 kN equally spaced 2m respectively, cross a girder of 25 m span from left to right, the 90 kN load leading. Calculate absolute maximum bending moment in the beam and its location. | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (a)        | State and explain Castigliano's second theorem with example.                                                                                                                                                             | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| <b>(b)</b> | having length 5m and loaded by a UDL of 15 kN/m over                                                                                                                                                                     | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| (c)        | Fig5 shows simply supported beam AB having varying moment of inertia. It is subjected to an eccentric load.                                                                                                              | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|            |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (a)        | 021                                                                                                                                                                                                                      | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| (a)        |                                                                                                                                                                                                                          | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| <b>(b)</b> | Choosing R <sub>B</sub> and M <sub>B</sub> as redundants, find flexibility matrix for                                                                                                                                    | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| (c)        | Analyse the frame shown in fig8 by Castigliano's second                                                                                                                                                                  | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| (a)        | Calculate slope-deflection equations for the portal frame as                                                                                                                                                             | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| <b>(b)</b> | E                                                                                                                                                                                                                        | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| (c)        | Analyse the portal frame as shown in fig9 by flexibility method and draw BMD.                                                                                                                                            | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| OR         |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (a)        | Find distribution factors for the frame shown in fig10.                                                                                                                                                                  | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| <b>(b)</b> |                                                                                                                                                                                                                          | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|            |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (c)        | Analyse the portal frame as shown in fig10 by flexibility matrix.                                                                                                                                                        | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|            | (a) (b) (c) (a) (b) (c) (a)                                                                                                                                                                                              | respectively, cross a girder of 25 m span from left to right, the 90 kN load leading. Calculate absolute maximum bending moment in the beam and its location.  (a) State and explain Castigliano's second theorem with example.  (b) Calculate deflection at free end B for a cantilever beam AB having length 5m and loaded by a UDL of 15 kN/m over whole span using energy principle.  (c) Fig5 shows simply supported beam AB having varying moment of inertia. It is subjected to an eccentric load. Calculate slope at A using energy principle.  OR  (a) Calculate deflection at free end of a cantilever beam as shown in fig6 using unit load method. Take EI=constant.  (b) Choosing R <sub>B</sub> and M <sub>B</sub> as redundants, find flexibility matrix for beam shown in fig7, Take EI=Constant.  (c) Analyse the frame shown in fig8 by Castigliano's second theorem and draw BMD. Take EI=Constant.  (a) Calculate slope-deflection equations for the portal frame as shown in fig9.  (b) Obtain stiffness matrix for the portal frame as shown in fig9.  Canalyse the portal frame as shown in fig9 by flexibility method and draw BMD.  OR  (a) Find distribution factors for the frame shown in fig10.  Carry-out only non-sway analyses for portal frame shown in fig10 by moment distribution method.  (c) Analyse the portal frame as shown in fig10 by flexibility |  |  |

