## Seat No.: \_\_\_\_\_

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

**BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2018** 

Subject Code:2150608 Date:20/11/2018

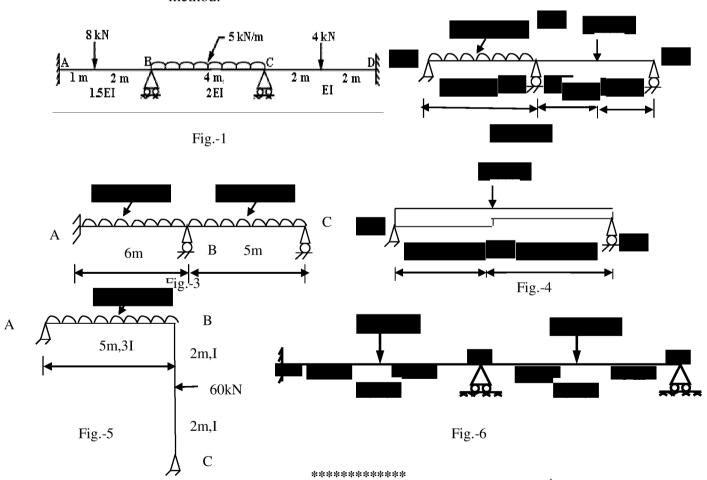
**Subject Name:Structural Analysis-II** 

Time: 10:30 AM TO 01:00 PM Total Marks: 70

## **Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

|            |            |                                                                                                                                                                                                                                                                                                                         | MARKS    |
|------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Q.1        | (a)        | Explain with illustrations the characteristics of flexibility / stiffness matrices.                                                                                                                                                                                                                                     | 03       |
|            | <b>(b)</b> | Derive slope and deflection method equations from first fundamentals.                                                                                                                                                                                                                                                   | 04       |
|            | (c)        | Analyse the beam as shown in fig1 by Moment Distribution Method and draw BMD.                                                                                                                                                                                                                                           | 07       |
| Q.2        | (a)<br>(b) | Explain causes of side-sway in plane frame with illustrations. A two span simple support continuous beam ABC having AB=5 m and BC = 6m. The span AB is loaded by a point load at centre by 50kN and span BC is loaded by a UDL of 20kN/m over entire span. Analyze the beam by moment distribution method and draw BMD. | 03<br>04 |
|            | (c)        | Analyse the beam shown in fig3 by slope-deflection method and draw BMD. Take EI=constant.  OR                                                                                                                                                                                                                           | 07       |
|            | (c)        | Analyse the beam shown in fig3 by flexibility method and draw BMD.                                                                                                                                                                                                                                                      | 07       |
| Q.3        | (a)        | Obtain slope-deflection equations for the beam shown in fig2.                                                                                                                                                                                                                                                           | 03       |
|            | (b)<br>(c) | Calculate the stiffness matrix for the beam shown in fig2. For a two span simple support continuous beam ABC having AB=5m and BC=5m, calculate the ILD ordinates for R <sub>A</sub> at every 1m interval.                                                                                                               | 04<br>07 |
| OR         |            |                                                                                                                                                                                                                                                                                                                         |          |
| Q.3        | (a)        | <ul> <li>(i) Define influence line diagram.</li> <li>(ii) Construct Influence Line Diagrams for Reaction (R<sub>A</sub>) and bending moment at 2 m from free end for a cantilever beam AB fixed at A and having span 5m.</li> </ul>                                                                                     | 03       |
|            | <b>(b)</b> | A UDL of intensity 16 kN/m, 5 m long moving on a beam of 10 m span. Find maximum bending moment at a section 4m from left support.                                                                                                                                                                                      | 04       |
|            | (c)        | Three point loads 90 kN, 75 kN and 55 kN equally spaced 3m respectively, cross a girder of 30 m span from left to right, the 55 kN load leading. Calculate absolute maximum bending moment in the beam and its location.                                                                                                | 07       |
| <b>Q.4</b> | (a)        | Explain Castigliano's both theorems.                                                                                                                                                                                                                                                                                    | 03       |
|            | <b>(b)</b> | Calculate the slope at free end B for a cantilever beam AB having length 5m and loaded by a UDL of 30 kN/m over whole span using energy principle.                                                                                                                                                                      | 04       |


| (c) | Fig4 shows simply supported beam AB having varying          |
|-----|-------------------------------------------------------------|
|     | moment of inertia. It is subjected to an eccentric load.    |
|     | Calculate deflection under the load using energy principle. |
|     | OR                                                          |

- Q.4 (a) Write and explain Muller Breslau's principal.
  (b) Calculate deflection at B for a cantilever beam AB, fixed at A and free at B, and is acted upon by a UDL of 45 kN/m over whole span using unit load method. Take EI=constant.
  - Consider length of AB=3m.

    (c) A propped cantilever beam of span 7m has fixed support at left end and roller support at right end is loaded by a UDL of 25kN/m up to 3m from left support. Analyze the beam by energy principle and draw BMD.
- Q.5 (a) Calculate slope-deflection equations for the portal frame as shown in fig.-5.
  - (b) Choosing M<sub>A</sub> and M<sub>B</sub> as redundants, find flexibility matrix for a fixed beam having span of 8m. Take EI=Constant.
  - (c) Analyze the portal frame as shown in fig.-5 by flexibility matrix method and draw BMD.

## OR

- Q.5 (a) Define: Stiffness, Distribution Factor, Carry Over Factor.
  - (b) Find distribution factors for the beam shown in fig.-6. 04
  - (c) Analyze the beam as shown in fig.-6 by stiffness matrix method.



**07** 

03