Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI(NEW) - EXAMINATION - SUMMER 2019

Subject Code:2160602	Date:14/05/2019
----------------------	-----------------

Subject Name: Applied Fluid Mechanics

Γime:10:30 AM TO 01:00 PM	Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks. **MARKS** Explain the terms: Hydraulic gradient line and Total energy line. **Q.1** 03 Derive an expression for the loss of head due to sudden 04 enlargement of a pipe. Prove that the velocity distribution for viscous flow between two **07** parallel plates when both plates are fixed across a section is parabolic in nature. 03 0.2 (a) Explain the terms: Pipes in parallel and Equivalent pipe. Derive an expression for the loss of head due to friction in pipe. **(b)** 04 (c) Explain the term hydraulic jump. Derive an expression for the **07** depth of hydraulic jump in terms of the upstream Froude number. OR Draw specific energy curve. Also derive expressions for critical 07 depth and critical velocity. Explain laminar boundary layer. **Q.3** 03 (b) Derive an expression for the momentum thickness (Θ) of boundary 04 layer flow. 07 Explain Froude model law. Obtain scale ratio for time, acceleration (c) and discharge for the Froude model law. 0.3 Define: Inertia force, Viscous force and Gravity force. 03 (a) Explain the Buckingham's π -theorem in dimensional analysis. **(b)** 04 Explain boundary layer separation. Also discuss the effect of (c) 07 pressure gradient on boundary layer separation. What is priming? Why it is necessary. **Q.4** 03 (a) Draw a layout of hydroelectric plant and explain different 04 components of hydroelectric plant. A Francis turbine of 1.2 metre runner diameter working under a 07 head of 5 metres at a speed of 200 rpm develops 70 kW when the rate of flow of water is 2 m³/s. If the head on the turbine is increased to 17 metre, determine the new speed, discharge and power. (a) Explain the efficiencies of turbine. **Q.4** 03 **(b)** Explain the principal and working of a centrifugal pump with a neat 04 A centrifugal pump delivers water against a net head of 15 m and 07

a design speed of 1000 rpm. The vanes are curved back to an angle of 30° with the periphery. The impeller diameter is 250 mm and outlet width 50 mm. determine the discharge of the pump if

Explain the terms: affux, back water curve, unsteady flow.

manometric efficiency is 95%.

Q.5

03

(b)	Differentiate between: (1) uniform flow and non-uniform flow (2) laminar flow and turbulent flow	04
(c)	A trapezoidal channel has side slopes of 3 horizontal to 4 vertical and slope of its bed is 1 in 2000. Determine the optimum dimensions of the channel if it is to carry water at 0.7 m ³ /s. Take Chezy's constant as 60.	07
	OR	
(a)	Explain the terms: open channel flow, steady flow, critical flow.	03
(b)	Show that for trapezoidal channel of most economical section (1) half of top width = length of one of the slopping side (2) hydraulic mean depth = $\frac{1}{2}$ depth of flow.	04
(c)	The discharge of water through a rectangular channel of width 7.5 m is 20 m ³ /s when depth of flow of water is 1.5 m. Calculate: (1) specific energy of the flowing water (2) critical depth and critical velocity (3) value of minimum specific energy.	07
	(c) (a) (b)	 laminar flow and turbulent flow (c) A trapezoidal channel has side slopes of 3 horizontal to 4 vertical and slope of its bed is 1 in 2000. Determine the optimum dimensions of the channel if it is to carry water at 0.7 m³/s. Take Chezy's constant as 60. OR (a) Explain the terms: open channel flow, steady flow, critical flow. (b) Show that for trapezoidal channel of most economical section (1) half of top width = length of one of the slopping side (2) hydraulic mean depth = ½ depth of flow. (c) The discharge of water through a rectangular channel of width 7.5 m is 20 m³/s when depth of flow of water is 1.5 m. Calculate: (1) specific energy of the flowing water (2) critical depth and critical
