eat No.: Enrolment No	
-----------------------	--

GUJARAT TECHNOLOGICAL UNIVERSITY

BE – SEMESTER – VI (NEW).EXAMINATION – WINTER 2016

	Subject Code: 2160602 Date: 24/10/2016 Subject Name: Applied Fluid Mechanics					
T	lime	: 10:30 AM to 01:00 PM Total Marks: 70 etions:				
	iisti u	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 				
Q.1	(a) (b)	Derive the equation for calculating loss of head due to sudden enlargement. Prove that Maximum Velocity is equal to one and half times the average velocity for flow between fixed parallel plate.	07 07			
Q.2	(a)	Derive "Darcy Weisbach" formula for the loss of head due to friction in pipe line.	07			
	(b)	A horizontal pipe of 150 mm diameter is suddenly enlarged to 300 mm diameter. The rate of flow of water through a pipe is 0.2 m ³ /sec. The pressure intensity of smaller pipe 125 kPa. Determine (i) Loss of head due to sudden enlargement (ii) Pressure intensity in large pipe. OR	07			
	(b)	A pipe of diameter of 20 cm conveying water. Calculate the discharge when centre line velocity is 3 m/sec and velocity at a point 4 cm from centre is 2.5 m/sec.	07			
Q.3	(a)	What is displacement Thickness? Derive the expression for displacement	07			
	(b)	thickness of boundary layer flow. If velocity distribution in laminar boundary layer over a flate plate is assumed to be given by second order polynomial $u = a + by+cy^2$, determine its form using the necessary boundary condition.	07			
		OR				
Q.3	(a)	The efficiency (η) of fan depends on density (ρ) , dynamic viscosity (μ) , angular velocity (ω) , diameter (D) & discharge (Q) . Express efficiency (η) in terms of dimensionless parameter.	07			
	(b)	What is afflux? Derive the expression for length of Back water curve.	07			
Q.4	(a)	Prove that for trapezoidal channel of most economical section half of top width	07			
	(b)	is equal to length of one of the sloping side. Find out bed slope of trapezoidal channel of bed width 4 m, depth of water 3m and side slope of 2 horizontal to 3 vertical. When discharge through channel is 20 m^3 /sec. Take Manning's Constant N = 0.03.	07			
		OR				
Q.4	(a)	Define: Critical flow, Critical depth, Alternate depth, Subcritical flow. Draw the specific energy curve for constant discharge in an open channel.	07			
	(b)	A circular channel of 2 m diameter carries water at a depth of 0.8 m. If the bed slope of the channel is 1500. Find the discharge through the channel. Take chezy's constant C= 50.	07			
Q.5	(a)	Compare Impulse turbine and Reaction Turbine.	07			

http://www.gujaratstudv.co			1		•	/	/	1	
	∩t	10	idv	rateti	01112	XX/XX/XX/	J./	nttn	

J	(b)	Explain construction and working of a pelton wheel.	0'
Q.5	(a)	OR Define: Volumetric efficiency, mechanical efficiency, hydraulic efficiency,	07
	(b)	Overall Efficiency. Explain the Buckingham's π- theorem for dimensional analysis.	0′
