Seat No.: Enrolment No.

Sub:	I	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI(NEW) - EXAMINATION - SUMMER 2019 Deta: 27/05/2016	<u> </u>
•		ode:2160609 Date:27/05/2019	9
Time	Subject Name: Computational Mechanics Time: 10:30 AM TO 01:30 PM Instructions: Total Marks: 70		
Instruc	 A M Figure 1 	ttempt all questions. Iake suitable assumptions wherever necessary. igures to the right indicate full marks. raw neat sketch /diagram wherever necessary.	
Q.1	(a)	Derive member stiffness matrix of the beam member with usual notations.	03
	(b)	Explain symmetry and anti-symmetry with suitable examples.	04
	(c)	Analyse continuous beam ABC as shown in <i>Figure-1</i> using stiffness member approach and draw bending moment and shear force diagram. Assume EI to be constant for all members.	07
Q.2	(a)	Explain the concept of rotation of axes in 2D and derive relation $A_M = R_T A_{S_+}$ from first principles.	03
	(b)	Explain material and geometric nonlinearities using suitable examples.	04
	(c)	Determine the displacement and rotation under the force and moment located at the center of the beam in <i>figure-2</i> using stiffness member approach. Consider $E = 210GPa$ and $I=4x10^{-4}$ m ⁴ .	07
	(c)	Using stiffness member approach compute reactions continuous beam <i>ABCD as shown in Figure-3</i> when Support <i>B</i> sinks <i>down</i> by $0.005m$ and support <i>C</i> sinks down 0.01 . Assume $E = 200 \ GPa$ and $I = 4 \times 10^{-4} \ m^4$.	07
Q.3	(a)	For the plane truss shown in <i>figure-4</i> , determine the joint displacements and support reactions using stiffness member approach. Take modulus of elasticity E= 200 GPa and area of member AB=1500mm ² and area of BC=CA=1500mm ² .	07
	(b)	Using member stiffness method obtain the member forces in the plane truss shown in <i>figure-5</i> and determine the support reactions. Take $E = 200$ GPa and $A = 2000 \text{ mm}^2$.	07
0.2	(a)	OR Analyza the rigid frame shown in figure 6 by direct stiffness method	07
Q.3	(c)	Analyze the rigid frame shown in <i>figure- 6</i> by direct stiffness method. Assume $E = 200GPa$; $I_{ZZ} = 1.33 \times 10^4 m^4$ and $A = 0.04 m^2$. <i>EI</i> and axial rigidity AE are the same for both the members.	07
	(b)	A rigid frame is loaded as shown in the <i>figure-6</i> , Compute the reactions	07

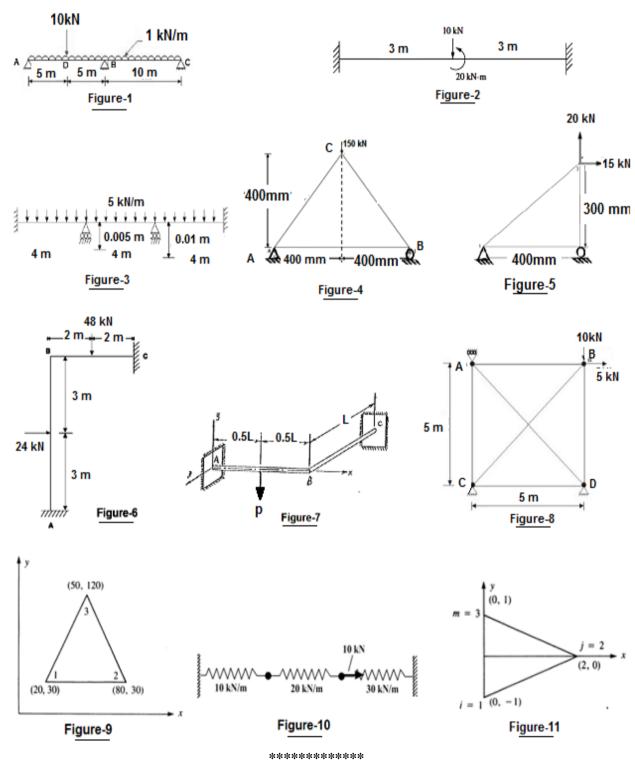
- (b) A rigid frame is loaded as shown in the *figure-6*, Compute the reactions and draw bending moment, shear force and axial force diagram if the support 'C' settles by 10 mm vertically downwards.
- Q.4 (a) Determine rearranged joint stiffness matrix for the grid shown in *figure-7*. 07

 Both members have same torsional rigidity and flexural rigidity. Take

 GJ = 0.8EI. Consider P=10kN and L=4m.
 - (b) Determine the joint displacements of the truss shown in *figure-8* by member stiffness method. Assume that all members have the same axial rigidity AE=constant.

OR

- Q.4 (a) Enlist various steps of finite element method.
 - (b) Derive shape functions for 2-noded bar element. 04
 - (c) Derive the equation $[k]{q}={f}$ using minimum potential energy 07 approach.
- Q.5 (a) Determine the shape functions for a Constant Strain Triangular (CST) 03 element in cartesian coordinate systems.


07

03

- (b) Evaluate strain-displacement matrix of the CST element of *figure -9*. The coordinates are given in units of millimeters. Let E = 210 GPa, Poisson's ratio = 0.25 and plate thickness = 10 mm.
- (c) Three springs are joined together as shown in *figure-10*. Evaluate nodal displacements and forces in the springs.

OR

- Q.5 (a) Determine the element stiffness matrix for the element having coordinates as shown in *figure-11* in units of mm. Assume plane stress conditions. Consider $E=30x10^6$ N/mm², Poisson's ratio = 0.25, and thickness t =1mm. The element nodal displacements have been determined to be u1 = 0.0, v1 = 0.0025 mm, u2 = 0.0012 mm., v2 = 0, u3 = 0 and v3 = 0.0025 mm.
 - (b) For the plane stress CST element shown in *figure-11*, Determine the element stresses σ_x , σ_y , τ_{xy} .

