GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2018

Subject Code:2161903 Date: 08/05/2018

Subject Name: Computer Aided Design

Time:10:30 AM to 01:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.

	Figures to the right indicate full marks		
	J	_	MARKS
Q.1	(a) (b)	Explain interactive computer graphics. Calculate the memory requirement for the 24-bit true color system for the 1024 x 1024 pixel resolutions.	03 04
	(c)	Explain the concept of FEM and discuss steps involved in FEA.	07
Q.2	(a) (b) (c)	Explain <i>same geometry different topology</i> for solid modeling. Explain constructive solid geometry. Explain DDA algorithm for generation of line. OR	03 04 07
	(c)	Using Bresenham's line algorithm, find the Pixel value position of line between points (1,5) and (4,10).	07
Q.3	(a)	Explain different types of surfaces with respect to modeling.	03
	(b)	Prove that $R(\theta_1) \cdot R(\theta_2) = R(\theta_1 + \theta_2)$ for geometrical transformation	04
	(c)	A line is represented by the ends $(2, 4, 6)$ and $(-3, 6, 9)$. If the value of parameter u is 0 and 1 at endpoints, determine tangent vector for line. Also determine coordinate represented by $u = 0$, $u = 0.25$, $u = 0.5$ and $u = 1$. Also, determine length of line and find out unit vector n for line.	07
Q.3	(a)	OR Develop vector equation of line in parametric form.	03
Q.S	(a) (b)	Triangle ABC has its vertices at A (4, 2), B (8, 2) and C (6, 5). It is to be rotated anticlockwise about point C through 90 ⁰ . Find the new position of triangle.	04
	(c)	Plot the Bezier curves having points, P_0 (1, 3), P_1 (5, 6), P_2 (6, 0) and P_3 (7,2). Plot for values $u=0,0.2,0.4,0.6,0.8,1.0$, if the characteristic polygon is drawn in sequence P_0 - P_1 - P_2 - P_3 .	07
Q.4	(a)	Draw and explain 2D element.	03
	(b)	For a 1D linear element prove the relation between displacement, strain and stress $\sigma = E \; B \; q$.	04
	(c)	Model a tapered bar shown in figure 1 as a single element and determine deflection at 100 mm 200 mm and 300 mm from fixed end. Assume modulus of elasticity as 200 GPa.	07
Q.4	(a)	OR Explain the statement "FEM operates from part to the whole".	03
۳٠٦		•	
	(b) (c)	Explain penalty approach used in FEA. An axial load of 20 KN applied on the bar as shown in figure 2. Using finite element method find the nodal displacement, stresses	04 07

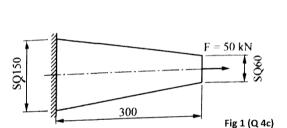
in each section and the reaction forces.

Q.5 (a) Explain plain stress and plain strains with figure.

03

04

07


- (b) A 25 m long 1D element is having linear shape function if the temperature at node 1 is 50°C and at node 2 is -20°C, find the temperature at a point 5 m away from node 1.
- (c) Compare result in case of 2D transformation of triangle ABC.
 - 1. Reflected about x-axis first followed by line y=-x
 - 2. Rotated about origin at 270° .

Coordinate of triangle ABC are: A (0, 0) B (3, 0) and C (0, 3).

OR

- **Q.5** (a) Explain degree of freedom in FEA. Show degree of freedom associated with structural, electrical and heat transfer problem.
- 03
- (b) In a triangular element, temperatures at nodes A, B and C are 100, 200 and 300 °C respectively. The coordinates of nodes are A (0, 0), B (10, 0) and C (5, 8). Estimate the shape functions associated with nodes and find temperature at point P (5,6). Refer figure 3.
- 04
- (c) For two member Struss as shown in figure 4, derived global stiffness matrix and determine deflection at node 2.

 Consider area A = 200 mm² and E = 200 GPa for each element.

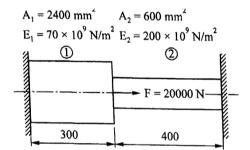
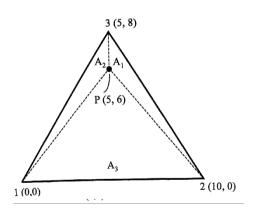



Figure 1 (Q 4c)

Figure 2 (Q 4c-or)

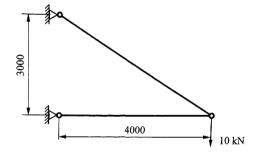


Figure 3 (Q 5b-or)

Figure 4 (Q 5c-or)