GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION - WINTER 2017

Subject Code: 2161903	Date: 20/11/2017
	200000000000000000000000000000000000000

Subject Name: Computer Aided Design

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Differentiate between Raster scan and vector scan displays 03
 - (b) Discuss application of FEA. 04
 - (c) State the various CAD software commercially available and explain the features used to model Hexagonal nut.
- Q.2 (a) List out various graphics standards and explain IGES.
 - (b) Explain the various steps required to solve mechanical problem using **04** finite element analysis.
 - (c) Using DDA algorithm, find the Pixel value position of line between points (2,10) and (6,5)

OR

- (c) Explain Bresenham's algorithm for generation of line with flow chart. 07
- Q.3 (a) Show with figure the number of nodes required in 1D, 2D and 3D elements 03
 - (b) Explain B-spline curve with figure. 04
 - (c) Plot the Bêzier curves having control points, P_0 (2, 2), P_1 (2, 3), P_2 (3, 3) and P_3 (3, 2). Plot for values u = 0, 0.25, 0.5, 0.75, 1.0, if the characteristic polygon is drawn in sequence $P_0 P_1 P_2 P_3$

OR

- Q.3 (a) What is Coons Patch?
 - (b) Differentiate Solid modelling and wire frame modelling. 04
 - (c) Line passing through the end points P₁ (2, 7, 3) and P₂ (6.26, -9.78, 13) in the direction given by the unit vector 0.213i -0.839j +0.5k. Find the coordinate of the mid-point of the line.
- Q.4 (a) Write 2D transformation matrix for Scaling, Rotation and Translation. 03
 - (b) Write short note on Constructive Solid Geometry (CSG) 04
 - (c) Triangle ABC has its vertices at A (0, 0), B (0, 4) and C (3, 2). Zoom this triangle 3 times and then hang it considering a free body using hook at point C with origin.

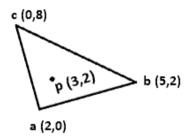
OR

Q.4 (a) What do you mean by degree of freedom? Write the degree of freedom for structural, Heat transfer, fluid flow and magnetic applications

- (b) A 90 m long 1D element is having linear shape function if the temperature at node 1 is -50° C and at node 2 is 70° C, find the temperature at a point 25 m away from node 1
- (c) A triangle ABC, having coordinate position of point A (15, 15) B (18, 12) 07 and C (15, 20). Determine the new vertex position if the triangle is:
 - 1. Scaled 0.5 times in X and 2 times in Y direction
 - 2. If mirrored about a line y = 4x + 12.
- Q.5 (a) Find the Jacobian matrices for triangle shown in Fig.1
- 03

(b) Explain the penalty approach used in FEA

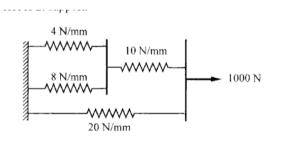
- 04
- (c) Modeled the tapered bar shown in figure 2 by considering it is made of 2 elements and determine deflection at both end and in middle of the bar. Assume modulus of elasticity as 200 GPa.


OR

- Q.5 (a) Derive the global stiffness matrix for the system of spring shown in fig 3 03
 - **(b)** Explain penalty approach used to solve FEA problem

04

07


(c) For the loading system as shown in figure 4, find out displacement, stress and support reaction. Assume modulus of elasticity $80 \times 10^3 \text{ N/mm2}$.

F = 50 kN

Fig 1

Fig 2

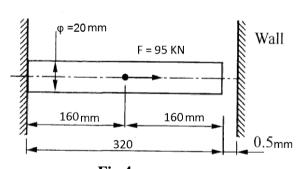


Fig 3

Fig 4
