Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2160912 Date: 27/04/2017

Subject Name: Design of DC Machines and Transformer

Time: 10:30 AM to 01:30 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

0.1 **Short Ouestions**

14

- Multi step core is used in transformer to
 - (a) Increase the output

(b) Decrease the cost of

copper

- In transformer the cylindrical winding is generally not used beyond
 - (a) 33 kV

- (b) 66 kV
- Tapping's are usually provided on 3
 - (a) H V winding

- (b) L V winding
- (c) Both H V and L V winding
- (d) None of the above
- Distribution transformer should be designed to have maximum n 4
 - (a) 100 % load

- (b) 75 % load
- 5 In transformers, with increase in supply frequency, the iron losses
 - (a) Increase

- (b) Decrease
- (c) Decrease or Increase
- (d) Remain unaffected
- Suggest cooling method for 300 kVA distribution transformer
 - (a) AN

(b) AB

(c) OFAF

- (d) ON
- Most suitable value of ratio of window height to window width

(b) 4

(c) 2

- (d) 5
- D C machine Yoke is made of
 - (a) Aluminium

(b) Phosphor Bronze

(c) Cast Steel

- (d) Brass
- Which loss is independent of load current & flux density
 - (a) Copper loss

(b) Eddy current loss

(c) Windage loss

- (d) Hysteresis loss
- Function of dummy coil in D C generator is 10
 - (a) To increase flux density
- (b) To improve commutation
- (c) To provide mechanical balance (d) To reduce eddy current
- Compared to induction motor the air gap in D C machine is 11
 - (a) Large

(b) Small

(c) Very small

- (d) Equal
- 12 Inter pole in D C machine are provided to reduce
 - (a) Hunting

- (b) Iron loss
- (c) Temperature rise
- (d) Sparking
- 13 Poles of D C machines are often laminated to
 - (a) Reduce pulsation loss
- (b) Reduce armature reaction
- (c) Reduce iron weight
- (d) Dissipate more heat

•	` ′	withstanding capacity.	
	(b)	Differentiate between power transformer and distribution	04
	(-)	transformer according to design point of view.	07
	(c)	Derive equation Et = $k\sqrt{Q}$ where Q = kVA rating of a transformer. Explain how service condition of transformer affect the value of	07
		K.	
		OR	
	(c)	What is design optimization? Derive necessary condition for	07
	()	designing a transformer with minimum cost.	
Q.3	(a)	Define following words related to transformer design:	03
		(I) Window space factor	
		(II) Staking factor	
		(III) Circumscribing Circle	
	(b)	, ,, ,	04
	(c)	Determine the main dimensions of the core for a 5 kVA,	07
		11000/400 V, 50 Hz, single phase core type distribution	
		transformer. The net conductor area in the window is 0.6 times the	
		net cross section of iron in the core. Assume a square cross-section for the core, a flux density 1 Wb/m2, a current density 1.4	
		A/mm2, and a window space factor 0.2. The height of window is 3	
		times its width.	
		OR	
Q.3	(a)		03
	()	transformer windings.	
	(b)		04
		in 3-phase core type transformer.	
	(c)	A 250 kVA, 6600/400 V, 3 phase core type transformer has a total	07
		loss of 4800 W at full load. The transformer tanks is 1.25 m in	
		height and 1 m x 0.5 m in plan. Design a suitable scheme for tubes	
		if the average temperature rise is to be limited to 35° C. The	
		diameter of tubes is 50 mm and are spaced 75 mm from each	
		other. The average height of tubes is 1.05 m. Specific heat dissipation due to radiation and convection is respectively 6 and	
		6.5 W/m 2 - 0 C. Assume that convection is improved by 35 % due to	
		provision of tubes.	
Q.4	(a)		03
•	(b)		04
		Why it is so?	
	(c)	Explain various factor affecting selection of number of poles for	07
		D.C. machine	
		OR	
Q.4	(a)		03
	(b)	_	04
	(c)	Explain various factors affecting selection of airgap length in D.C.	07
		machine.	
Q.5	(a)	How to reduce the demagnetizing effects and cross-magnetizing	03
Ų.S	(a)	effect?	03
	(b)		04
		Define the output equation of a D & machine.	רט

Q.5

(c)	Calculate the diameter and length of armature for a 7.5kW, 4 pole,	07
	1000 r.p.m 220 V shunt motor. Given: full load efficiency= 0.83;	
	maximum gap flux density=0.9 Wb/m2: specific electric	
	loading=30,000 ampere conductors per meter; field form factor =	
	0.7. Assume that the maximum efficiency occurs at full load and	
	field current is 2.5% of rated current. The pole face is square.	
	OR	
(a)	State different methods used to improve armature reaction effect	03
	in D.C. machine.	
(b)	Explain steps to design shunt field winding of a D.C. machine.	04
(c)	A 500 kW, 375 r.p.m. 8 pole, D C generator has a flux per pole of	07
	0.0885 Wb. Determine the armature demagnetizing and cross	
	magnetizing mmf per pole if the brushes are given a lead of 5 % of	
	pole pitch. Assume power developed by armature to be equal to	
	rating of machine.	
