Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

Subject Code: 2160912 Date: 28/04/2018

Subject Name: Design of DC Machines and Transformer

Time: 10:30 AM to 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define: (1) Specific Electric Loading (2) Specific Magnetic Loading 03
 (b) Explain design difference between power transformer and distribution 04
 - **(b)** Explain design difference between power transformer and distribution **0** transformer.
 - (c) Write a short note on classification of insulating materials.
- Q.2 (a) Why circular coils are preferred in transformer winding?
 - (b) Explain: (1) Window space factor (2) Stacking factor. 04
 - (c) Derive the output equation of a 3-phase core type transformer. 07

OR

- (c) Determine the dimensions of core and yoke for a 200 kVA, 50 Hz single phase core type transformer. A cruciform core is used with distance between adjacent limbs equal to 1.6 times the width of core laminations. Assume voltage per turn 14 V, maximum flux density 1.1 Wb/m², Window space factor 0.32, current density 3 A/mm² and stacking factor = 0.9. The net iron area is 0.56 d² in a cruciform core where d is the diameter of circumscribing circle. Also the width of largest stamping is 0.85 d.
- Q.3 (a) Explain: Bracing in transformer winding.
 - (b) Explain: Significance of mitred joints in transformer. 04
 - (c) What is design optimization? Derive the condition for maximum efficiency of a transformer.

OR

- Q.3 (a) Give technical reason for low flux density for yoke of a three phase 03 transformer.
 - (b) Explain effect of change in frequency on losses of transformer. 04
 - (c) Derive the expression of leakage reactance of a 3-phase core type distribution **07** transformer.
- Q.4 (a) Discuss the factors to be considered when selecting a suitable value of core length of a D.C. machine.
 - (b) Explain any two factors while deciding the length of air gap in the design of a D.C. machine.
 - (c) A design is required for a 50 kW, 4 pole, 600 r.p.m. D.C. shunt generator, the full load terminal voltage being 220 V. If the maximum gap density is 0.83 Wb/m² and the armature ampere conductors per meter are 30,000, calculate suitable dimensions of armature core to give a square pole face.

Assume that the full load armature voltage drop is 3 percent of the rated terminal voltage, and that the field current is 1 percent of rated full load current. Ratio of pole arc to pole pitch is 0.67.

OR

- Q.4 (a) State factor to be consider for selection of specific loading.
 - (b) Derive output equation of a D.C. machine. 04
 - (c) Explain guideline used for the selection of number of armature slots in D.C. **07** machine design.

07

http://www.gujaratstudy.com

Q.5	(a)	Explain the losses at commutator surface.	03
	(b)	How to reduce the cross magnetizing effect of armature reaction in a D.C. machine?	04
	(c)	Explain steps to design shunt field winding of a D.C. machine.	07
		OR	
Q.5	(a)	How inter pole improves commutation in D.C. machine?	03
	(b)	Explain: Staggering of Brushes in a D.C. machine.	04
	(c)	Explain various factors affecting selection of number of poles for D.C. machine.	07
