Seat No.: _____

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER - VI (NEW).EXAMINATION - WINTER 2016

Subject Code: 2160709 l Subject Name: Embedded & VLSI Design			Date: 26/10/2016	
1	ime	: 02:30 PM to 05:00 PM etions:	Total Marks: 70	
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 		
Q.1	(a)	Explain different classification of Embedded Systeach.	tems? Give an example of	07
	(b)	Explain the concept of Static Memory (SRAM) Climitation of SRAM and DRAM as Random Access	<u> </u>	07
Q.2	(a)	What is EDLC? Explain different phases of Ember Life Cycle.	edded Product Development	07
	(b)	Explain the fabrication steps of nMOS transistor wi OR	th necessary figures.	07
	(b)	Explain VLSI Design flow using Y-chart.		07
Q.3	(a)	What is the need of Scaling? Discuss constant volta merits and demerits.	ge scaling in detail with its	07
	(b)	Calculate noise margin and V_{th} of the circuit for CN parameters: $VDD = 3.3 \text{ V}$, For NMOS $V_{TO,n} = 0.6 \text{ V}$, μ_n Cox=60 μ A/V ² , (W/For PMOS $V_{TO,p} = -0.7 \text{ V}$, μ_p Cox=25 μ A/V ² , (W/OR	L)n=8	07
Q.3	(a)	Draw the inverter circuit with depletion type nMOS regions of driver and load transistors for different in voltage points V_{OH} , V_{OL} , V_{IH} and V_{IL} for depletion-	nput voltages. Derive critical	07
	(b)	Consider a MOS system with the following parametrox = 200Å, $\Phi_{GC} = -0.85$ V, $NA = 2*1015$ cm. Determine the threshold voltage V under zero bias a (T = 300° K). Note that ϵ_{ox} =3.97ev and ϵ_{si} =11.7e	3 , $Qox = q* 2 *10^{11} \text{ C/cm}^{2}$ at room temperature	07
Q.4	(a)	Define τ_{PHL} and τ_{PHL} .Derive expression for proparting the for CMOS Inverter.	gation delay times τ_{PHL} and	07
	(b)	Explain NAND gate using CMOS realizate Complementary pass transistor realization. OR	ion, pass transistor and	07
Q.4	(a)			07
	(b)	Explain switching power dissipation of CMOS inve	rter.	07
0.5	(a)	Draw CMOS negative edge-triggered master-slave	D flip-flop and explain its	07

1

4 /	,			
httn:/	/www.	GIIIara	tetudv	com
111111111111111111111111111111111111111	·	zurara	ustuuv	·com

		working.	
	(b)	Explain BIST techniques.	07
		OR	
Q.5	(a)	What is the need for voltage bootstrapping? Explain dynamic voltage bootstrapping circuit with necessary mathematical analysis.	07
	(b)	Explain Latch up problem in CMOS inverter. Mention causes and remedy for avoiding latch up	07
