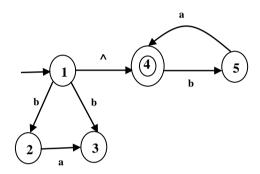
Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

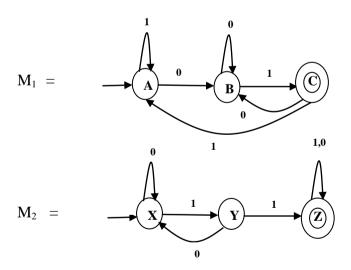
BE - SEMESTER-VI • EXAMINATION - SUMMER • 2014

Subject Code: 160704 Date: 28-05-2014

Subject Name: Theory of Computation


Time: 10:30 am - 01:00 pm Total Marks: 70

Instructions:

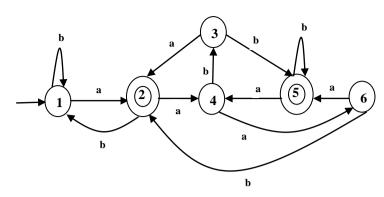

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define One-to-one and Onto Functions. Also explain Compositions and Inverse of 07 functions.
 - (b) Convert the following NFA- Λ into FA.

07

Q.2 (a) Let M_1 and M_2 be the FAs pictured below, recognizing languages L_1 and L_2 07 respectively.

Draw the FAs recognizing the following languages.


- $L_1 \cap L_2$
- \bullet $L_2 L_1$
- (b) Define the Strong Principle of Mathematical Induction. Prove the following using **07** mathematical Induction.

$$7+13+19+....+(6n+1)=n(3n+4)$$

OR

(b) Prove: The language accepted by any finite automaton is regular.

Q.3 (a) Minimize the following DFA (If Possible).

(b) Let L be the language corresponding to the regular expression (011+1)* (01)*. Find **07** the CFG generating L.

OR

Q.3 (a) Given the CFG G, find a CFG G in Chomsky Normal form generating $L(G) - \{\Lambda\}$ 07

 $S \longrightarrow A \mid B \mid C$

 $A \longrightarrow aAa/B$

 $B \longrightarrow bB/bb$

 $C \longrightarrow aCaa / D$

 $D \longrightarrow baD/abD/aa$

- (b) Prove: The language $pal = \{ x \in \{a, b\}^* \mid x = x^r \}$ cannot be accepted by any **07** deterministic pushdown automaton.
- Q.4 (a) What is Pumping Lemma and Equivalence Relation?
 - **(b)** Design and draw a deterministic PDA accepting strings with more a's than b's. Trace it for the string "abbabaa".

OR

Q.4 (a) Define CFG and Design a CFG for the following language.

 $L = \{ x \in \{0,1\}^* \mid n_0(x) \neq n_1(x) \}$

Q.4 (b) Attempt the following:

• Draw FA for $(a + b)^*$ baaa.

- Write a Regular Expression for the String of 0's and 1's in which number of 0's and 1's are even.
- Q.5 (a) Draw the TM to copy string and delete a symbol.

(b) Differentiate Regular Grammars and Context Sensitive Grammars.

officientiate Regular Granimars and Context Bensitive

OR

Q.5 (a) Define:

[1] Basic complexity Classes

[2] Primitive Recursive Functions

[3] The Time and Space Complexity of a Turing Machine

(b) Explain Polynomial Time Reductions and NP- Completeness.

07

07

07

07

07

07

07