GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEMESTER - VI • EXAMINATION -Summer-2015

Subject Code: 160704 Date:14/05/2015

Subject Name: Theory of Computation

Time: 10.30AM-01.00PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** Define Mathematical Induction Principle and Prove that for every $n \ge 0$, **07** (a)

$$\sum_{i=0}^{N} i = n (n+1) / 2$$

(i) Suppose that Languages L1 and L2 are the subsets given below. **(b)**

Languages L1 and L2 are the subsets given below. 05 Where
$$\Sigma = \{0, 1\}$$

 $L1 = \{ x \mid 00 \text{ is not a substring of } x \}$

 $L2 = \{ x \mid x \text{ ends with } 01 \}$

Draw FAs recognizing the following languages

- (ii) Show that the function $f_1(x,y) = x + y$ is primitive recursive.
- 02
- **Q.2** Write definition of finite automata and draw FA for the strings:
 - (i) The string in $\{0,1\}^*$ ending in 10 or 11
 - (ii) The string corresponding to Regular expression {11}*{00}*
 - Define Context Free Grammar(CFG). Design CFG for Generating Following **(b) 07** Language:
 - (1) For Balanced Parenthesis
 - (2) Set of even length strings in $\{a, b, c, d\}^*$ with two middle symbol equal.

\mathbf{OR}

- Design an ambiguous grammar for if-then-else statement that also generates **(b)** if-then statement. Re-write an equivalent unambiguous grammar. Prove that Grammar is Unambiguous by tracing "ic1tic2taea".
- Convert NFA-^ to NFA and DFA. Initial State: A, Final State: D Q.3 (a) 07

Q	δ(q, ^)	$\delta(q, 0)$	$\delta(q, 1)$
A	{B}	{A}	Ø
В	{D}	{C}	Ø
С	Ø	Ø	{B}
D	Ø	{D}	Ø

(b) Define Pumping Lemma for Regular Languages. Use Pumping Lemma to show **07** that following languages are not regular.

$$L = \{ 0^{n} 1^{2n} / n > 0 \}$$

$$L = \{ ww^{R} / w \varepsilon \{0,1\}^{*} \}$$

OR

07

07

Convert NFA-^ to NFA and FA. Initial State: A, Final State: E 0.3

Q	δ(q, ^)	$\delta(q, 0)$	$\delta(q, 1)$
A	{B,D}	{A}	Ø
В	Ø	{C}	{E}
С	Ø	Ø	{B}
D	Ø	{E}	{D}
Е	Ø	Ø	Ø

06

08

Find CFG from given PDA that accepts the language {0ⁿ1ⁿ}. PDA is **(b)**

 $(Q, \Sigma, \Gamma, \delta, q, Z, F)$ where $Q = \{q, r\}, \Sigma = \{0, 1\}, \Gamma = \{Z, X\}, \delta$ is defined by:

State	Input	Stack	New State	Stack	
q	0	Z	q	XZ	
q	0	X	q	XX	
q	1	X	r	^	
r	1	X	r	^	
r	٨	Z	r	٨	

05

(1) Given the Context Free Grammar G, find a CFG G' in Chomsky Normal **Q.4** (a)

Form generating
$$L(G) - \{ \}$$

 $S \rightarrow SS \mid A \mid B$

$$A \rightarrow SS \mid AS \mid a$$

$$B \rightarrow \wedge$$

(2) Convert following CFG to PDA

$$S \to 0S1 \mid 00 \mid 11$$

02

For the language L={set of strings over alphabet {a, b} with exactly twice as **(b)** many a's as b's} design a PDA (Push Down Automata) and trace it for the sring "abaabbaaaaabaab"

07

07

OR

Given the Context Free Grammar G, find a CFG G' in Chomsky Normal Form **Q.4** generating $L(G) - \{ \}$

1)
$$S \rightarrow aY \mid Ybb \mid Y$$

$$X \rightarrow \land \mid a$$

$$Y \rightarrow aXY \mid bb \mid XXa$$

2)
$$S \rightarrow AA$$

$$A \rightarrow B \mid BB$$

$$B \rightarrow abB \mid b \mid bb$$

For the language L={ $a^ib^jc^k \mid i, j, k \ge 0$ and i + j = k } design a PDA (Push Down 07

Automata) and trace it for String "bbbbbccccc"

08

Q.5 Design Turing Machine(TM) to accept Palindrome over {a,b}, even as well as (a)

06

Write Short Note on Following: **(b)**

- Universal TM (i)
- NP-Hard and NP-Complete Language

OR

Draw Turing Machine(TM) which recognizes words of the form **Q.5** (a) $\{a^nb^nc^n \mid n\geq 1\}$

06

08

- Write Short note on Following: **(b)**
 - (i) Halting Problem
 - (ii) Church Turing Thesis
