GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI- EXAMINATION - SUMMER 2016

Subject Code:160704 Date:17/05/2016

Subject Name: Theory Of Computation

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define relation. Define reflexive and transitive relation. A binary relation R on NxN is defined as (a,b)R(c,d) if $a \le c$ or $b \le d$. Prove that R is reflexive but not transitive.
 - (b) Define language.

Draw Deterministic Finite Automata for the following languages

- i) $L_1 = \{ x \in (0,1)^* | x \text{ contains } 110111 \}$
- ii) $L_2 = \{ x \in (0,1)^* | x \text{ contains odd number of zero and even number of } 1 \}$
- iii) $L_{3} = \{ x \in (0,1)^* | x \text{ do not contains } 110 \}$
- Q.2 (a) Define mathematical induction. Prove that if 0 < a < 1 then $(1-a)^n \ge 1 na$. 05
 - (b) Define NFA and NFA-Λ. Convert the following NFA to DFA 07

- (b) Using proof by contradiction, prove $\sqrt{3}$ is Not a rational number.
- Q.3 (a) Define Context Sensitive Grammar. Design a CSG for the following language $L = \{a^n b^n c^n \mid n > 0\}.$
 - (b) Prove that the following language is ambiguous and convert into unambiguous
 S → S + S | S * S | a

OR

Q.3 (a) Minimize the following FSM

0,1 0 0 0 F 0 1 E **07**

07

07

1		//		1	
htti	n·,	/ *********	0111	aratstudy	Com
1111	v./	/ VV VV VV .	.∠u	ım aıstuu '	milos, y

	(b)	b) Define Context Free Grammar. Design a CFG for the following language.			
		$L = \{ x \varepsilon (0,1)^* \mid n_0(x) = n_1(x) \}$			
Q.4	(a)	Define PDA. Draw a PDA for the complement of the following language $L = \{ww^R \mid w \in (0,1)^*\}$	07		
	(b)		07		
	(D)	i) $L_1 = \{x \in (0,1)^* \mid x \text{ do not ends with } 11\}$	07		
		ii) $L_2 = \{x \in (0,1)^* \mid x \text{ contains both } 101 \text{ and } 110\}$			
		OR			
Q.4	(a)	Prove that any Regular Language can be accepted by FA.	07		
	(b)	Draw the DDA for the fellowing language	07		
	(D)	Draw the PDA for the following language $L = \{a^i b^j c^k \mid i = j+k\}$	07		
Q.5	(a)	Define pumping lemma for regular language. Prove that the language $L = \{a^i \mid i \text{ is NOT prime}\}$ is irregular.	07		
	(b)	Write Short note on Universal Turing Machine.	07		
		OR			
Q.5	(a)	Define a Turing Machine. Design a Turing machine for deleting nth symbol from a string w from the alphabet $\Sigma = \{0,1\}$.	07		
	(b)		07		
