Seat No.:

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (OLD) - EXAMINATION - SUMMER 2017

Subject Code: 160704 Date: 05/05/2017

Subject Name: Theory Of Computation

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain one-to-one, onto and bijection function with suitable example.
 - (b) Explain equivalence relation with example. 07
- Q.2 (a) Write Regular Expressions for the following languages of all strings in $\{0,1\}^*$
 - (i) Strings that do not end with 01.
 - (ii) The language of all strings containing both 101 and 010 as substrings
 - (b) Using Principle of Mathematical Induction, prove that for every n >= 1 $\sum_{n} i = n (n+1) / 2$ 07

OR

- **(b)** Prove that $\sqrt{2}$ is Irrational by method of Contradiction.
- Q.3 (a) Let M_1 and M_2 be the two FAs as given below. 07

Draw FA recognizing $(L_1 \cup L_2)$ and (L_1-L_2) where L_1 and L_2 correspond to M_1 and M_2 respectively.

(b) Compare FA, NFA and NFA-∧.

OR

Q.3 (a) Given the Context Free Grammar G, find a CFG G' in Chomsky Normal Form generating $L(G) - \{ \}$

 $S \rightarrow aY \mid Ybb \mid Y$

$$X \to \wedge \mid a$$

М1

 $Y \rightarrow aXY \mid bb \mid XXa$

(b) Draw a FA for following regular language.

(i) (11+110)*0

- (ii) (0+1)*(10+11)
- Q.4 (a) For the language $L = \{ xcx^r \mid x \in \{a,b\}^* \}$ design a PDA(Push Down Automata) and trace it for string "abcba".
 - (b) Write Kleene's Theorem part-I, Any regular language can be accepted by a **07** finite automation.

OR

Q.4 (a) Write transition table for PDA recognizing following language: $\{a^ib^jc^k \mid j=i \text{ or } j=k \}$.

07

07

07

(b) Convert following NFA- Λ to NFA))	Convert	follo	wing	NFA-	Λt	o NF
---	---	---	---------	-------	------	------	-------------	------

q	$\delta (q, \Lambda)$	$\delta(q, 0)$	$\delta(q, 1)$
A	{ B }	{A}	Ó
В	{D }	{C}	Ó
С	Ó	Ó	{ B }
D	Ó	{ D }	Ó

Q.5	(a)	Draw a Turing Machine(TM) to accept Palindromes over {a,b}. (Even as well	07
		as Odd Palindromes).	

(b) Write a short note on Universal Turing Machine.

Q.5 (a) Write a Turing Machine to copy strings.

07 (b) Write a short note on μ -recursive function. **07**

07

07