Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (OLD) - EXAMINATION - SUMMER 2018

Subject Code:160704 Date:05/05/2018

Subject Name: Theory Of Computation

Time:10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) (i) For following regular expression, Draw an FA recognizing the corresponding 07 language

$$(0+1)*(1+00)(0+1)*$$

- (ii) Write Regular Expression corresponding to each of the following subsets of {0, 1}*
 - a. The language of all strings containing both 101 and 010 as substrings.
 - b. The language of all strings in which both the number of 0's and the number of 1's are even.
- (b) (i) Write Principle of Mathematical Induction. Using Principle of Mathematical Induction, prove that for every n≥0,

$$\sum_{i=1}^{n} i^2 = \underbrace{n(n+1)(2n+1)}_{6}$$

- (ii) Prove by Contradiction that for any sets A, B and C, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.
- Q.2 (a) Given the CFG G, Find a CFG G' in Chomsky Normal Form

 $S \rightarrow AACD$

 $A \rightarrow aAb \mid ^$

 $C \rightarrow aC \mid a$

 $D \rightarrow aDa \mid bDb \mid ^$

(b) Convert the following NFA-^ into its equivalent NFA and FA.
Initial State: A Final State: D

q	δ(q, ^)	$\delta(q, 0)$	$\delta(q, 1)$
A	{B}	{A}	Ø
В	{D}	{C}	Ø
С	Ø	Ø	{B}
D	Ø	{D}	{ Ø }

OR

(b) Let M_1 and M_2 be the FAs pictured below, recognizing languages L_1 and L_2 07 respectively

05

07

Draw the FAs recognizing the following languages:

- $L_1 \cap L_2$
- \bullet $L_2 L_1$
- Q.3 (a) (i) Write a CFG for solving simple (& parenthesized) expression, such as + and *.
 - (ii) Also write CFG fir regular expression $r = (a + b) (a + b + 0 + 1)^*$ Use CFG defined for part(i).
 - (iii) Derive the string (which is defined in part(ii)) a * (a + b00) by applying left most derivation and right most derivation.
 - (b) (i) Show that the function f(x, y) = x*y is primitive recursive. 03
 - (ii) Find the transitive closure and the symmetric closure of the relation { (1,2), (2,3), (3,4), (5,4) }
 - (iii) Give recursive definition for the language L which is the set of all integers (positive and negative) divisible by 7.

OR

- Q.3 (a) Define Context Free Grammar. Design a CFG for the language $L = \{ a^i b^j c^k \mid i \neq j + k \}$
 - (b) (i) Define bijection function. Explain Compositions and Inverses of Functions. 07
 - (ii) Define Primitive Recursive Function. Show that Addition function of two positive integers is primitive recursive.
- Q.4 (a) (i) Design a PDA to recognize the language generated by the following grammar: 04 S \rightarrow 0AB A \rightarrow 1A | 1 B \rightarrow 0B | 1A | 0

Show the acceptance of the input string string "011100" by this PDA.

(ii) Prove that the language

$$L = \{ww|w \text{ is in } (0+1)^*\} \text{ is not a CFL.}$$

- (b) (i) Explain Universal Turing Machine. 04
 - (ii) Prove the theorem: "A language is recursive if and only if both it and its complement are recursively enumerable."

OR

Q.4 (a) (i) Prove that $L = \{a^n b^n c^n \mid n \ge 0 \}$ is not a CFL using pumping lemma. 03

[P.T.O.] 2

(ii) Consider following PDA machine $M = (\{p, q\}, \{0,1\}, (x, z\}, \delta, q, Z)$ where δ 04 is given by $\delta(q, 1, z) = (q, xz)$ $\delta(q, 1, x) = (q, xx)$ $\delta(q, ^{\wedge}, x) = (q, ^{\wedge})$ $\delta(q, 0, x) = (p, x)$ $\delta(p, 1, x) = (p, \varepsilon)$ $\delta(p, 0, z) = (q, z)$ Construct Equivalent CFG. **07** Write Short Note on following: Halting Problem (i) (ii) Explain P and NP Completeness Design DPDA for the language L that accepts strings with more a's than b's. Trace **Q.5 07** (a) String "abbabaa". **(b)** Design a Turing Machine that creates a copy of its input string. Trace String "baa". **07** Construct pushdown automata for the following language: Q.5 **07** (a) $L = \{ \text{the set of strings over alphabet } \{a, b\} \text{ with exactly twice as } \}$

Design a Turing Machine which recognizes words of the form $a^nb^nc^n \mid n \ge 1$.

many a's and b's }

Trace string "abaabbaaa".

Trace string "aabbcc".

(b)

07