Seat No.: _____

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI • EXAMINATION - WINTER • 2014

Subject Code: 160704 Date: 05-12-2014

Subject Name: Theory of Computation

Time: 02:30 pm - 05:00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Answer the following:

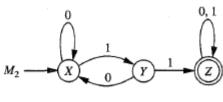
07

- (i) Given the relation R in A as $R=\{(1,1), (2,2), (2,3), (3,2), (4,2), (4,4)\}$ is R (a) reflexive (b) symmetric (c) transitive? (d) antisymmetric?
- (ii) Show that $2^n > n^3$ for n > 10 by Mathematical Induction.
- **(b)** Answer the following:

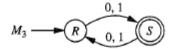
07

- (i) Give recursive definition of each of the following sets.
 - a. The set T of positive integer divisible by 2 or 7.
 - b. The set U of all string in $\{0,1\}^*$ containing the substring 00.
- (ii) Prove that for any every n>=0, $n(n^2+5)$ is divisible by 6.
- Q.2 (a) Find a regular expression corresponding to each of the following subsets of $\{0, 1\}^*$.

07


- i. The language of all strings that do not contain the substring 110.
 - ii. The language of all strings containing both 101 and 010 as substrings.
 - iii. The language of all strings in which both the number of 0's and the number of 1's are odd.
- **(b)** For each of the following regular expressions, draw an FA recognizing the corresponding language.

07


- i. $1(01 + 10)^* + 0(11 + 10)^*$
- ii. (010 + 00)*(10)*

OR

(b) Let M_1 , M_2 and M_3 be the FAs pictured in Figure below, recognizing languages L_1 , L_2 , and L_3 respectively.

(b)

Draw FAs recognizing the following languages.

(a)

i. $L_1 U L_2$

ii. $L_1 \cap L_2$

iii. L_1 - L_2

iv. $L_1 \cap L_3$

 $v. L_3 - L_2$

http://www.gujaratstudy.com

Q.3	(a)	Explain Pumping Lemma and its applications.	07
	(b)	Generate the Context-Free Grammars that give the following languages.	07
		(i) {w w contains at least three 1s}	
		(ii) $\{w \mid w \text{ starts and ends with the same symbol}\}$	
		OR	
Q.3	(a)	Write kleene's theorem part -1.	07
	(b)	For given CFG G, find Chomsky normal form:	07
	()	G has productions: S -> AaA CA BaB A-> aaBa CDA aa DC	
		$B->bB bAB bb aS$ $C->Ca bC D$ $D->bD \Lambda$	
Q.4	(a)	Write a Turing Machine to copy strings.	07
	(b)	Write PDA for following languages:	07
	` /	$\{a^{i}b^{j}c^{k} i,j,k>=0 \text{ and } j=i \text{ or } j=k\}.$	
		OR	
Q.4	(a)	Write a Turing Machine to delete a symbol.	07
	(b)	Write PDA for following languages:	07
		$\{ \ x \in \{ \ a,b,c \}^* \mid n_a(x) < n_b(x) \ or \ n_a(x) < n_c(x) \ \}.$	
Q.5	(a)	Explain Universal Turing Machine and Halting Problem.	07
	(b)	Answer the following	07
	` ′	(i) Explain time and space complexity	
		(ii) Explain P and NP completeness	
		OR	
Q.5	(a)	Explain unbounded minimization and μ recursive functions.	07
	(b)	Top down and bottom up parsing	07
