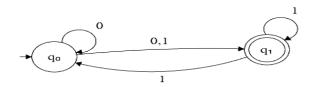
## **GUJARAT TECHNOLOGICALUNIVERSITY**

BE - SEMESTER-VI OLD) - EXAMINATION - WINTER 2017

SubjectCode:160704 Date: 16-11-2017

**Subject Name: Theory Of Computation** 

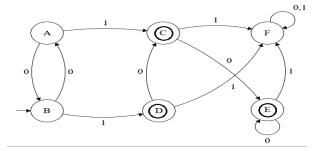

Time: 02:30 pm to 05:00 pm Total Marks:70

**Instructions:** 

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define relation. Define reflexive and transitive relation. A relation R is given as  $R = \{(0,0),(1,1),(2,2),(3,3),(3,1),(1,0),(0,1),(1,3)\}$ . Prove that R is reflexive, symmetric but Not transitive.
  - (b) Define language. 07

Draw Deterministic Finite Automata for the following languages

- i)  $L_1 = \{ x \in (0,1)^* | x \text{ contains } 101 \}$
- ii)  $L_2 = \{ x \in (0,1)^* \mid x \text{ contains odd number of zero and ends with } 00 \}$
- iii) L<sub>3</sub> = {  $x \in (0,1)^* | x \text{ ends with } 11$  }
- Q.2 (a) State proof by contradiction. 02
  Prove that  $\sqrt{2}$  is an irrational number. 05
  - (b) Define NFA and NFA-Λ. Convert the following NFA to DFA 07




OR

- (b) Define weak principle of mathematical induction. Using Mathematical induction prove that  $1+2+3+...+n=n^*(n+1)/2$
- Q.3 (a) Define Context Free Grammar. Design a CFG for the following language  $L = \{a^n b^n \mid n > 0\}.$ 
  - (b) Prove that the following language is ambiguous and convert into unambiguous  $E \rightarrow E + E \mid E * E \mid id$

OR

**Q.3** (a) Minimize the following FA.



**(b)** State pumping lemma for FA. Prove that

07

| 1 /     | /                                             | •             | 1        |
|---------|-----------------------------------------------|---------------|----------|
| httn:// | TTITTITI O                                    | ujaratstuc    | tr com   |
| / /     | $\mathbf{w} \mathbf{w} \mathbf{w} \mathbf{v}$ | HIMALAISHIK   | IV.COIII |
| 1100011 |                                               | a a a co ca c | .,       |

 $L = \{ 0^n 1^n \}$  is not regular

| <b>Q.4</b> | (a)        | Define PDA. Draw a PDA for the following language                                                                               | 07  |
|------------|------------|---------------------------------------------------------------------------------------------------------------------------------|-----|
|            |            | $L = \{0^n 1^n   w \epsilon(0,1) \text{ and } n \ge 0\}$                                                                        |     |
|            | <b>(b)</b> | Write regular expression for the following languages                                                                            | 07  |
|            |            | i) $L_1 = \{x \in (0,1)^* \mid x \text{ ends with } 11\}$                                                                       |     |
|            |            | ii) $L_2 = \{x \in (0,1)^* \mid x \text{ contains both } 101 \text{ and } 110\}$                                                |     |
|            |            | OR                                                                                                                              |     |
| Q.4        | (a)        | Prove that any Regular Language can be accepted by FA.                                                                          | 07  |
|            | <b>(b)</b> | Drow the DDA for the following language                                                                                         | 07  |
|            | <b>(b)</b> | Draw the PDA for the following language                                                                                         | U   |
|            |            | $L = \{a^i b^j c^k \mid i = j + k\}$                                                                                            |     |
| Q.5        | (a)        | Convert the following language in Chomsky normal form.                                                                          | 07  |
|            |            | $S \rightarrow ASB \mid SAB  A \rightarrow BC  B \rightarrow bB \mid c  C \rightarrow e$                                        |     |
|            | <b>(b)</b> | Write Short note on Universal Turing Machine.                                                                                   | 07  |
|            |            | OR                                                                                                                              |     |
| Q.5        | (a)        | Define a Turing Machine. Design a Turing machine for deleting nth symbol from a string w from the alphabet $\Sigma = \{0,1\}$ . | 07  |
|            | <b>(b)</b> | Prove that following $add(x,y) = x+y$ is primitive recursive function.                                                          | 07  |
|            | (D)        | Trove that following $\operatorname{add}(x,y) = x + y$ is primitive recursive function.                                         | U I |

\*\*\*\*\*

า