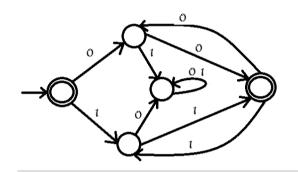
GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (OLD) EXAMINATION - WINTER 2018


Subject Code: 160704 Date: 30/11/2018

Subject Name: Theory of Computation

Time: 02:30 PM TO 05:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (a) (1) State the properties of Equivalence Relations. 03 **Q.1** (2) State the strong principle of mathematical induction and show how will 04 you give proof by induction? (b) (1) Prove that the statements: $(p \lor q) \to r$ and $(p \to r) \lor (q \to r)$ are logically 03 equivalent.
 - (2) What is the regular expression of following FA? 04

Q.2 (a) Convert following NFA- Λ to NFA, draw the NFA. $\{E\} \in A$.

q	$\partial(\mathbf{q},\Lambda)$	∂ (q,0)	∂ (q,1)
Α	{B,D}	{A}	Ø
В	Ø	{C}	{E}
С	Ø	Ø	{B}
D	Ø	{E}	{D}
Е	Ø	Ø	Ø

(b) Draw NFA –
$$\Lambda$$
 for $((0+1)*10+(00)*(11)*)*$
Show step by step construction.

OR

- **(b)** State part-1 and part-2 of Kleens theorem and show the proof.
- **07**

(a) L1 and L2 are two languages: Q.3

07

07

07

 $L1 = \{x \mid 11 \text{ is not a substring of } x\}$

 $L2 = \{x \mid x \text{ starts with } 0 \text{ and ends with } 0\}$

Draw FA for both L1 and L2 and construct FA for L3 = L2 - L1

(b)	An NFA with states 1-5 and input alphabet {a, b} has the following transition
	table.
	$\begin{bmatrix} a & \partial(a a) & \partial(a b) \end{bmatrix}$

\overline{q}	$\partial(q,a)$	$\partial(q,b)$	
1	{1,2}	{1}	
2	{3}	{3}	
3	{4}	{4}	Q.1 Draw its transition diagram
4	{5}	Ø	Q.2 Calculate ∂^* (1,a)
5	Ø	{5}	Q.3 Calculate ∂* (1,aaabaab)

OR

Q.3 (a) Convert this NFA to FA

 $\begin{array}{c|c}
 & 0,1 \\
\hline
 & 0,1 \\
\hline
 & 0,1 \\
\hline
 & 0,1
\end{array}$

(b) A language L $\{a, b\}^*$ is defined as follows:

07

07

07

- 1. a ∈ L
- 2. For any $x \in L$, $ax \in L$
- 3. For any x and y in L, all the strings bxy, xby and xyb are in L
- 4. No other strings are in L.

Prove that every element of L has more a's than b's.

- **Q.4** (a) Define PDA and give PDA to accept strings of palindrome. Show trace on the string *baab*
 - 07

(b) Write a short note on parsing.

07

OR

Q.4 (a) Define deterministic pushdown automata. Construct an example of DPDA that accepts strings with more a's than b's

03

- **(b)** (1) Give recursive definition for Language Pal of palindromes.
- 03
- (2) Give CFG equivalent to regular expression $(011 + 1)^* (01)^*$

04

- Q.5 (a) Define Turing Machine and draw a TM to accept {a,b}*{aba}{a,b}*
- 07

(b) Write a short note on Universal Turing Machines.

07

OR

- Q.5 (a) Write a note on models of computation and The Church Turing Thesis.
- 07 07
- (b) What is the difference between accepting a language and recognizing a language? Write short note on recursively enumerable languages.
