GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2160704 Date: 03/05/2017

Subject Name: Theory of Computation

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. In the questions the symbol Λ denotes the null string, i.e., the string of length zero.

								MARKS		
Q.1		Answer the following questions:								
	1	Define onto and one-to-one functions.						02		
	2	Give recursive definition of a tree.								
	3	Define reflexivity, symmetry, and transitivity properties of relations.								
	4	 Consider the relation R = {(1,2), (1,1), (2,1), (2,2), (3,2), (3,3)} defined over {1, 2, 3}. Is it reflexive? Symmetric? Transitive? Justify each of your answers. Draw truth table for following logic formula: P → (¬P V ¬Q). Is it a tautology? A contradiction? Or neither? Justify your answer. 								
	5									
Q.2	(a)) Define DFA and NFA and NFA- Λ								
	(b)	Give rectisive definitions of the extended transition functions, 6 (i.e.,								
	(c)	for strings) for DFA and NFA. Minimize the DFA shown in Fig. 1.								
	(C)	OR								
	(c)	Consider the NFA-Λ depicted in following table:								
			Λ	a	b	c				
		→p	Φ	{p}	{q}	{r}				
		q	{p}	{q}	{r}	Ф				
		* r	{q}	{r}	Φ	{p}				

- (i) Compute the Λ -closure of each state.
- (ii) Convert the NFA- Λ to a DFA.
- Q.3 (a) Explain 'finite state machines with outputs'. Discriminate between Mealy and Moore machines.
 - (b) Convert the Moore machine shown in Fig. 2 into an equivalent Mealy machine.
 - (c) Use Pumping Lemma to show that $L = \{x \in \{0,1\}^* \mid x \text{ is a palindrome}\}$ is not a regular language.

OR

- Q.3 (a) Give recursive definition of regular expressions. State the hierarchy of the operators used in regular expressions.
 - (b) Using constructive approach determine NFA- Λ for the regular expression (0+1)*1(0+1).
 - (c) Fig. 3 shows two DFAs M1 and M2, to accept languages L_1 and L_2 , respectively. Determine DFAs to recognize L_1 U L_2 .

1

Q.4	(a) (b)						
	(c)	Consider following grammar: $S \rightarrow A1B$ $A \rightarrow 0A \mid \Lambda$ $B \rightarrow 0B \mid 1B \mid \Lambda$ Give leftmost and rightmost derivations of the string 00101. Also draw the parse tree corresponding to this string.	07				
0.4		OR	0.2				
Q.4	(a)	Define CFG. When is a CFG called an 'ambiguous CFG'?	03				
	(b)	Consider following grammar:	04				
		$S \rightarrow ASB \mid \Lambda$ $A \rightarrow aAS \mid a$					
		$A \rightarrow AAS \mid a$ $B \rightarrow SbS \mid A \mid bb$					
		i. Eliminate useless symbols, if any.					
		ii. Eliminate discless symbols, if any.					
	(c)	Convert the following grammar to a PDA:	07				
	(0)	I → a b Ia Ib I0 I1	0.				
		$E \rightarrow I \mid E * E \mid E + E \mid (E)$					
Q.5	(a)	Give definition of Turing Machine. What do you mean by an instantaneous description of a Turing Machine?	03				
	(b)	Describe recursive languages and recursively enumerable languages.	04				
	(c)	•					
	(0)	OR	07				
Q.5	(a)	Briefly describe following terms: (1) halting problem (2) undecidable problem	03				
	(b)	Using pumping lemma for CFL's, show that the language $L = \{a^m b^m c^n \mid$	04				
		$m \le n \le 2m$ } is not context free.					
	(c)	Design a Turing machine for the language over {0,1} containing strings with equal number of 0's and 1's.	07				

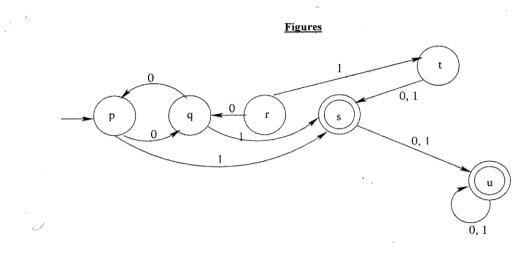


Fig. 1 for Q 2 (c)

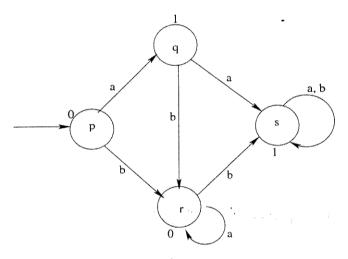


Fig. 2 for Q 3 (b)

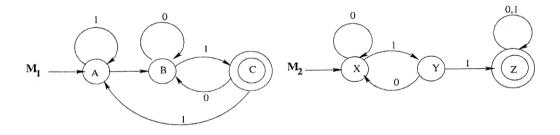


Fig. 3 for Q 3 (c) (OR)

3

Note: In Fig.3 for Q:3 (c) consider transition from $A \rightarrow B$ having symbol 0.