Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2018

Subject Code:2160704

Date:03/05/2018

Subject Name: Theory of Computation

Time:10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Show that the CFG with productions

03

$$S \rightarrow a \mid Sa \mid bSS \mid SSb \mid SbS$$

is ambiguous.

- (b) Define onto function. In each case, a relation on the set {1, 2, 3} is given. Of the three properties, reflexivity, symmetry, and transitivity, determine which ones the relation has. Give reasons.
 - a. $R = \{(1, 3), (3, 1), (2, 2)\}$

b.
$$R = \{(1, 1), (2, 2), (3, 3), (1, 2)\}$$

c.
$$R = \phi$$

(c) Write Principle of Mathematical Induction. Prove that for every $n \ge 1$,

07

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = n/(n+1)$$

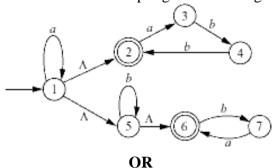
Q.2 (a) Explain Chomsky Hierarchy.

03

(b) Convert the given Moore machine into Mealy machine. Draw state transition **04** diagram of Mealy machine.

Present	Next State		Output
State	0	1	
$\rightarrow p_0$	r	q_0	3
p_1	r	q_0	1
q_0	p_1	S ₀	0
q_1	p_1	S ₀	1
r	q_1	p_1	0
S0	S 1	r	0
S ₁	S 1	r	1

- (c) Given the context-free grammar G, find a CFG G' in Chomsky Normal Form. 07
 - G:
- $S \rightarrow AaA \mid CA \mid BaB$
- A → aaBa | CDA | aa | DC
- $B \rightarrow bB | bAB | bb | aS$
- $C \rightarrow Ca \mid bC \mid D$
- $D \rightarrow bD \mid \varepsilon$


 ε represents null.

OR

- (c) Define Context Free Grammar. Find context-free grammar for the language: L 07 = $\{a^ib^j \mid i < 2j\}$
- Q.3 (a) Show that the function f(x, y) = x + y is primitive recursive.
 - (b) Explain Union Rule and Concatenation Rule for Context-Free Grammar. 04

1

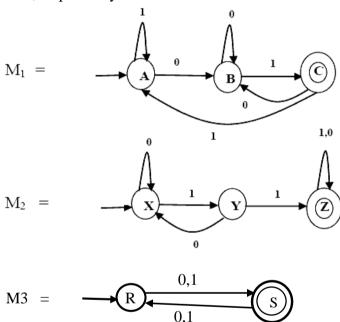
(c) Figure shows NFA-^. Draw an FA accepting the same language.

Q.3 (a) Define Constant functions, Successor functions and Projection function.

(b) Let G be the grammar

03 04

07


 $S \rightarrow aB \mid bA$

 $A \rightarrow a \mid aS \mid bAA$

 $B \rightarrow b \mid bS \mid aBB$

For string aaabbabbba, find Left most derivation and Right most derivation.

(c) Let M_1 , M_2 and M_3 be the FAs pictured in Figure, recognizing languages L_1 , L_2 07 and L_3 , respectively.

Draw FAs recognizing the following languages.

a. $L_1 U L_2$

b. $L_1 \cap L_3$

Q.4 (a) Decide whether the given language is a CFL, and prove your answer.

03

$$L = \{ xyx \mid x, y \in \{a, b\}^* \text{ and } |x| \ge 1 \}$$

(b) Construct PDA for

04

 $S \rightarrow 0AB$

 $A \rightarrow 1A \mid 1$

 $B \rightarrow 0B \mid 1A \mid 0$

Trace the string 01011 using PDA.

(c) Give transition tables for deterministic PDA recognizing following language: 07

$$L = \{x \in \{a, b\}^* \mid n_a(x) \neq n_b(x)\}$$

Trace it for the string abbaababbb

OR

- (a) Show using pumping lemma that the given language is not a CFL. 03 $L = \{ a^n b^{2n} a^n \mid n > 0 \}$
 - (b) Prove that There are CFLs L_1 and L_2 so that $L_1 \cap L_2$ is not a CFL, and there is a **04** CFL L so that L' is not a CFL.
 - For the PDA, ($\{q_0, q_1\}, \{0, 1\}, \{0, 1, z_0\}, \delta, q_0, z_0, \phi$), 07 (c) where δ is

```
\delta(q_0, \varepsilon, z_0) = \{(q_1, \varepsilon)\}
\delta(q_0, 0, z_0) = \{(q_0, 0z_0)\}\
\delta(q_0, 0, 0) = \{(q_0, 00)\}\
\delta(q_0, 1, 0) = \{(q_0, 10)\}
\delta(q_0, 1, 1) = \{(q_0, 11)\}\
\delta(q_0, 0, 1) = \{(q_1, \varepsilon)\}\
\delta(q_1, 0, 1) = \{(q_1, \varepsilon)\}\
\delta(q_1, 0, 0) = \{(q_1, \varepsilon)\}\
\delta(q_1, \varepsilon, z_0) = \{(q_1, \varepsilon)\}\
```

Obtain CFG accepted by the above PDA.

- Find a regular expression corresponding to each of the following subsets of {0, 03} Q.5 (a) 1}*
 - 1. The language of all strings that begin or end with 00 or 11.
 - 2. The language of all strings containing both 11 and 010 as substrings.
 - (b) Define Context-Sensitive Grammar. Write a CSG for $\{a^nb^nc^n \mid n \ge 1\}$. 04
 - Draw a transition diagram for a Turing machine for the language of all **07** palindromes over {a, b}.

OR

- Q.5 (a) Use the pumping lemma to show that following language is not regular. 03 $L = \{xy \mid x, y \in \{0, 1\}^* \text{ and } y \text{ is either } x \text{ or } x^r \}$
 - **(b)** Write Short note on Church-Turing Thesis.

04

Draw a transition diagram for a Turing machine accepting the language {SS **07** $| S \in \{a, b\}^* \}.$
