Seat No.: _ Enrolment No._

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI(NEW) - EXAMINATION - SUMMER 2019

Subject Code:2160704 Date:16/05/2019

Subject Name: Theory of Computation

Time: 10:30 AM TO 01:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

- Define 1) Parse tree 2) Ambiguous grammar **Q.1** 03 (a)
 - Prove by mathematical induction: for every $n \ge 1$, 1 + 3 + 5 + ...04 **(b)** $+(2n-1)=n^2$
 - **07** Consider the grammar: $S \rightarrow ABA$, $A \rightarrow aA \mid \in B \rightarrow bB \mid \in ABA$ Is given grammar ambiguous? If so then remove ambiguity
- **Q.2** Design Moore machine to generate 1's complement of binary 03 (a)
 - **(b)** Write Regular Expression over the alphabets {a, b} consisting 04 strings:
 - Second last character as 'a'
 - Starting with 'a' and ending with 'b'
 - **07** Find context free grammar for the following language. $L_1 = \{a^i b^j c^k \mid i = j + k\}, L_2 = (011+1)^* (01)^*, L_3 = (0+1)1^* (1+(01)^*)$

- Draw FA for following languages: (c)
 - $L1 = \{w \mid 00 \text{ is not substring of } w\}$
 - $L2 = \{ w \mid w \text{ ends in } 01 \}$

Find FA accepting languages (i). L1 \cup L2 and (ii). L1 \cap L2

- Give the left linear grammar for RE $(10)^*1$ 0.3 (a)

Λ

03

03

07

Minimize the given DFA: **(b)** 04

State / Transition	a	b
→ ①	{3}	{2}
2	{4}	{1}
3	{5}	{4}
4	{4}	{4}
5	{3}	{2}

07 (c) Eliminate useless symbols, ∈-productions and unit productions for the following grammar:

 $S \rightarrow 0A0 \mid 1B1 \mid BB, A \rightarrow C, B \rightarrow S \mid A, C \rightarrow S \mid \in$

OR

0.3 Consider the grammar: (a)

 $S \rightarrow aAS \mid a$

 $A \rightarrow SbA \mid SS \mid ba$

Derive left most and right most derivation of string aabbaa using given grammar.

- **(b)** Give CFG for following languages: 04 2). $L = \{a^{n+2}b^n \mid n >= 0\}$
- Construct finite automata for following left linear grammar: (c) **07** $S \rightarrow X0 \mid Y1$

		$X \rightarrow Y1$	
		$Y \rightarrow Y0 \mid 1$	
Q.4	(a)	Compare PDA with FSM	03
-	(b)	Write a note on DPDA and NPDA	04
	(c)	Design a pushdown automata to check well-formed parenthesis.	07
	` /	OR	
Q.4	(a)	Give the formal definition of Turing machine. Also compare the	03
		power of DFA, NFA, DPDA, NDPA and TM	
	(b)	Write a note on post machines.	04
	(c)	Design a Turing machine to reverse the string over alphabet {0,	07
		1}	
Q.5	(a)	Compare and contrast push down automata and Turing machine.	03
	(b)	Enlist limitations of Turing machines.	04
	(c)	Design a Turing machine which accepts the language consisting	07
		string which contain aba as a substring over alphabets {a, b}	
		OR	
Q.5	(a)	Discuss universal Turing machine	03
	(b)	Write a short note on Halting problem	04
	(c)	What is decidability? How to prove that the given language is	07
		undecidable? List some undecidable problems	
