GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER - VI (NEW). EXAMINATION - WINTER 2016

Subject Code: 2160704 Date: 25/10/2016

Subject Name: Theory of Computation

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

 $S \longrightarrow aAbB$

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Use the principle of mathematical induction to prove that

07

07

 $1+3+5+...+r=n^2$ for all n>0 where r is an odd integer & n is the number of terms in the sum. (Note : r=2n-1)

(b) Convert the CFG, G ($\{S,A,B\},\{a,b\},P$, S) to CNF, where P is as follows

 $A \longrightarrow Ab \mid b$ $B \longrightarrow Ba \mid a$

- Q.2 (a) Draw a Turing Machine(TM) to accept Palindromes over {a,b}. (Even as well as Odd Palindromes)
 - (b) Convert the NFA given in Table below to its corresponding DFA and draw the DFA

Current State	Input symbol	
	0	1
$\rightarrow Q_0$	Q_1	Q_0, Q_2
Q_1	Q_2	Q_0
Q2 *	Q0	

OR

(b) Prove that the following CFG is Ambiguous.

07

$$S -> S + S | S * S | a | b$$

Write the unambiguous CFG based on precedence rules for the above grammar. Derive the parse tree for expression (a + a)*b from the unambiguous grammar.

- Q.3 (a) Let A = {1, 2, 3, 4, 5, 6} and R be a relation on A such that aRb iff a is a multiple of b. Write R. Check if the relation is i) Reflexive ii) Symmetric iii) Asymmetric iv) Transitive
 - **(b)** There are 2 languages over $\Sigma = \{a, b\}$

07

L1 = all strings with a double "a"

L2 = all strings with an even number of "a"

Find a regular expression and an FA that define $L1 \cap L2$

OR

Q.3 (a) If $L = \{ 0^i 1^i | i \ge 0 \}$ Prove that L is regular.

07

(b) Prove that if L1 and L2 are regular languages then L1 \cap L2 is also a regular 07 language.

http://www.gujaratstudy.com

Q.4	(a)	Given a CFG, $G = (\{S,A,B\},\{0,1\},P,S)$ with P as follows	07
		S> 0B 1A $A> 0S 1AA 0$ $B> 1S 0BB 1$	
		Design a PDA M corresponding to CFG, G. Show that the string 0001101110	
		belongs to CFL, L(G)	
	(b)	Design a PDA, M to accept L = $\{a^n b^{2n} \mid n \ge 1\}$	07
		OR	
Q.4	(a)	Design a FA for the regular expression $(0 + 1)(01)*(011)*$	07
	(b)	 Write a regular expression for language L over {0,1} such that every string in L i) Begins with 00 and ends with 11. ii) Contains alternate 0 and 1. 	07
Q.5	(a)	Draw a transition diagram for a Turing machine accepting the following language. { $a^n b^n c^n \mid n \ge 0$ }	07
	(b)	Explain Universal Turing machine with the help of an example	07
	. ,	OR	
Q.5	(a)	Define functions by Primitive Recursion. Show that the function $f(x, y) = x + y$ is primitive recursive.	07
	(b)	Prove Kleene's Theorem (Part I): Any Regular Language can be accepted by a Finite Automaton (FA).	07
