Seat No.:

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2018

Subject Code: 2171911 Date: 15/11/2018

Subject Name: Advance Heat Transfer

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Give some examples of conduction with internal heat generation.
 - (b) Explain the terms: Fin efficiency and Fin effectiveness. 04
 - (c) Discuss various regimes of pool boiling with neat sketch.
- Q.2 (a) Define Biot number. State its importance in transient heat conduction 03 analysis.
 - (b) What is lumped system analysis and when is it applicable?
 - (c) Show that maximum temperature in a plane wall with heat generation whose one face is insulated and other face kept at is given by

OR

- (c) Derive an expression for temperature distribution during steady state heat conduction with internal heat generation and exposed to convection environment in hollow cylinder.
- Q.3 (a) Explain heat transfer from the human body.
 - (b) What is irregular body? How the heat transfer analysis carried out for 04 irregular bodies.
 - (c) Explain radial fins of rectangular and parabolic profiles. 07

OR

- Q.3 (a) Give difference between free convection and forced convection with suitable 03 examples.
 - (b) Explain heat transfer in high velocity flow with neat sketch. 04
 - (c) A stainless steel wire (k = 19 W/mk) 3 mm in diameter and one metre long has current flowing, I = 200 A

Resistivity, $\rho = 70 \mu \text{ ohm/cm}$

The wire is submerged in liquid at 110 0 C and the surface heat transfer coefficient h is 4 kW/m²K. Calculate the central temperature of wire.

- Q.4 (a) The filament of a 60 W light bulb may be considered as black body radiating into a black enclosure at 60 °C. The filament diameter is 0.1 mm and length 50 mm. Considering radiation determine the filament temperature.
 - (b) Explain difference between filmwise and dropwise condenastaion. 04

- (c) A copper bus bar 25 mm diameter is cooled by air at 30 0 C and flowing past the bus bar with a velocity of 3 m/s. If the surface temperature of bar is not to exceed 80 0 C and the resistivity of copper is 0.0175 x 10⁻⁶ ohm.m³/m, calculate the following:
 - (a) The heat transfer coefficient from the surface of bus bar to air
 - (b) The permissible current intensity for the bus bar.

Assume
$$N_u = 0.44~R_e^{0.5}$$
 for $10 < R_e < 10^3$
= $0.22~R_e^{0.6}$ for $10^3 < R_e < 2~x~10^5$

Take thermo physical properties of air at 30 °C are:

$$k = 0.02673 \text{ W/mk}, v = 16 \text{ x } 10^{-6} \text{ m}^2/\text{s}$$

OR

Q.4 (a) Differentiate boiling and condensation.

03

(b) Explain turbulent film condensation.

04

(c) A 10 cm diameter sphere is maintained at 120 °C. It is enclosed in a 12 cm diameter concentric spherical surface maintained at 100 °C. The space between two spheres is filled with air at 200 kPa. Take properties at film temperature as:

$$K_f = 0.0319 \text{ W/mk}, \ \mu = 2.22 \text{ x } 10^{-5} \text{ kg/ms}, \ Pr = 0.703, \ \text{ms} : = \frac{1}{M_{\pi^{-1}}}$$

Use relation: $N_u = 0.228 (G_r P_r)^{0.226}$

Calculate the convective heat transfer rate from inner sphere.

Q.5 (a) Discuss radiation effects on temperature measurements.

03

(b) Define shape factor. Discuss salient features of shape factor.

04

07

(c) A solid steel ball 5 cm in diameter and initially at 450 0 C is quenched in a controlled environment at 90 0 C with convection coefficient of 115 W/m²K. Determine the time taken by centre to reach a temperature of 150 0 C. Take thermophysical properties as:

$$C = 420 \text{ J/kgK}, \rho = 8000 \text{ kg/m}^3, k = 46 \text{ W/mK}$$

OR

Q.5 (a) Discuss radiation properties of a participating medium.

03

(b) Explain in brief emmisivity and absorptivity of gases and gas mixtures.

04

07

(c) What is Beer's law? Why do surfaces absorb differently for solar or earthbound radiation?
