Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) - EXAMINATION - SUMMER 2018

Subject Code:2171916 Date:28/04/2018

Subject Name: Applied Mechanics of Solid(Department Elective - I)
Time: 02.30 PM to 05.00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	3.	rigures to the right indicate full marks.	MADIZE
			MARKS
Q.1	(a)	Define the term "Shear Lag".	03
	(b)	Explain Homogeneous deformation.	04
	(c)	Enlist theory of failures and explain any two.	07
Q.2	(a)	Describe the significance of compatibility equations in 2D.	03
	(b)	Explain Yield and Failure criteria.	04
	(c)	Explain Mohr's circle diagram for principal strains.	07
OR			
	(c)	Explain following terms: Stress Invariants, Photo-elastic stress	07
		measurement and principles of least work.	
Q.3	(a)	Elaborate Saint Venant's Principle.	03
	(b)	Define: Plane stress and plane strain.	04
	(c)	Explain Airy stress function in Cartesian Coordinates.	07
		OR	
Q.3	(a)	What is incremental consecutive equation?	03
	(b)	Derive equation of Pure bending of prismatic bar.	04
	(c)	Prove that to convert a plane strain solution to a plane stress solution,	07
		substitute $\frac{1+2v}{(1+v)^2}E$ for E and $\frac{v}{1+v}$ for v.	
Q.4	(a)	Explain Hooke's law for elastic material.	03
	(b)	Write down comparison between Tresca and Von-Mises theory (Plane Stress).	04
	(c)	Derive differential equations of equilibrium for an elastic body.	07
		OR	
Q.4	(a)	Define Principle of super position with an example.	03
	(b)	Describe the term "Octahedral Stresses".	04
	(c)	Explain Druker's stability postulate for stability of work-hardening materials.	07
Q.5	(a)	What is Work Hardening of a material?	03
	(b)	"If the load is released after plastic deformation, residual stresses as well	04
		as residual strains will be developed." Justify the statement.	
	(c)	Explain convexity, normality and uniqueness for elastic perfectly plastic materials.	07
OR			
Q.5	(a)	Define: Deformation theory of plasticity.	03
-	(b)	What is EPP materials?	04
	(c)	Explain Flow rule, effective stress and effective strain for work hardening material.	07
