GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII(NEW) EXAMINATION - SUMMER 2019

Subject Code:2171916	Date:10/05/2019
----------------------	-----------------

Subject Name: Applied Mechanics of Solid

Time:02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	3.	rigures to the right mulcate full marks.	MADIZO
			MARKS
Q.1	(a)	Explain Homogeneous deformation.	03
	(b)	Define the term "Shear Lag".	04
	(c)	Explain Mohr's circle diagram for principal strains.	07
Q.2	(a)	What is Recapitulation? Explain in brief.	03
	(b)	Explain Yield and Failure criteria.	04
	(c)	Enlist theory of failures and explain any two.	07
OR			
	(c)	The state of stress at a point is such that $\sigma_x = \sigma_y = \sigma_z = \tau_{xy} = \tau_{yz} = \tau_{zx} = \rho$	07
		Determine the principal stresses and their directions.	
Q.3	(a)	Elaborate Octahedral Shearing stress theory in theory of failures.	03
	(b)	Elaborate Saint Venant's Principle	04
	(c)	Derive stress distribution using Airy's stress function in a simply	07
		supported beam subjected to pure bending.	
		OR	
Q.3	(a)	What is Circular Polariscope?	03
	(b)	State basic assumptions for the theory of incremental constitutive relation	04
	()	for elastic – plastic material.	05
	(c)	With the help of neat sketch, discuss behavior of Prandit-Reuss under	07
		plane stress $\sigma_{ij} = [\sigma_1, 0, \sigma_3]$.	
Q.4	(a)	Explain Hooke's law for elastic material.	03
	(b)	Derive the equation of stress of thick pressure vessels only subjected to	04
	()	external pressure.	0=
	(c)	Explain Normality, Convexity and Uniqueness for an elastic solids.	07
0.4	(a)	OR	02
Q.4	(a)	Define Principle of super position with an example. Explain Von mises theory.	03 04
	(b) (c)	Explain von mises theory. Explain the Principle of virtual work and prove the relation for elastic	07
	(C)	solids.	U7
Q.5	(a)	State term associated flow rule benefits compared to non-associated flow	03
Q.S	(u)	rules.	0.5
	(b)	State the term Kinematic Hardening for an elasto-plastic material.	04
	(c)	Explain Flow rule, effective stress and effective strain for work hardening	07
	(-)	material.	-
OR			
Q.5	(a)	Define: Deformation theory of plasticity.	03
-	(b)	Explain stress strain relation for work hardening material.	04
	(c)	State the term Bouschinger Effect for an elasto-plastic material.	07
		-	
