GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII(NEW) • EXAMINATION – WINTER 2016					
Subject Code:2171916 Subject Name: Applied Mechanics of Solid(Department Elective - I) Time:10.30 AM to 1.00 PM Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. Time:10.30 AM to 1.00 PM Total Marks: 70 Total Marks: 70					
	3.	Figures to the right indicate full marks.			
Q.1	(a)	A differential element of material at a point is subjected to a state of plane strain $\varepsilon_x = 500 \mathrm{x} 10^{-6}$, $\varepsilon_y = -300 \mathrm{x} 10^{-6}$, $\gamma_{xy} = 200 \mathrm{x} 10^{-6}$, which tends to distort the element. Determine the principal strains on the element and equivalent strains acting on an element of the material oriented at the point, clockwise 30° from the original position.	07		
	(b)	Determine direct and shear stresses on an axis located at 15 degrees, counter clockwise from x-axis. $\sigma_x = -90MPa$, $\sigma_y = 50MPa$, and $\tau_{xy} = 60MPa$.	07		
Q.2	(a)	Derive the equilibrium equations for a three dimensional problem.	07		
	(b)	The engineering strain matrix relative to xyz coordinate system is defined as: $\varepsilon_{ij} = 10^{-4} \begin{bmatrix} 2 & -1 & 2 \\ -1 & 0 & 1 \\ 2 & 1 & -4 \end{bmatrix}$ Determine the engineering strain matrix relative to	07		
		$x'y'z'$ system if matrix of direction cosines is given as $\frac{1}{15}\begin{bmatrix} 14 & -5 & 2\\ 2 & 10 & 11\\ -5 & -10 & 10 \end{bmatrix}.$			
	(L)	OR	07		
	(D)	Explain following terms: (1) Bouschinger Effect (2) Kinematic Hardening (3) Loading surface for an elastoplastic material	07		
Q.3	(a)	Derive the equation of strain transformations in 2D.	07		
	(b)	Enlist theories of failure and explain why theory of Maximum Principal stress is not suitable for ductile materials?	07		
Q.3	(a)	OR A thin walled cylindrical pressure vessel with closed ends, has diameter of 508 mm and thickness of 6.35 mm. It is subjected to an internal pressure p . The yield stress of 225 MPa. Find the maximum pressure p_y under which the vessel will begin to yield using (i) Tresca criterion and (ii) von Mises criterion.	07		
	(b)	With the help of neat sketch, discuss behavior of Prandit-Reuss under plane stress $\sigma_{ij} = [\sigma_1, 0, \sigma_3]$.	07		
Q.4	(a)	With the help of neat sketch, explain following terms associated with the photoelasticity: (i) Polarizer (ii) Wave-plate (iii) Birefringence	07		
	(b)	Write constitutive relation for incremental stress-strain relation for elastic solid.	07		

Also describe conditions under which it should be used.

07

Q.4	(a)	With the help of neat sketch, explain term associated flow rule and state its benefits compared to non-associated flow rules.	07
	(b)	Explain following terms associated with an elastic solid. (i) Normality (ii) Uniqueness	07
Q.5	(a)	State compatibility equations and explain their significance.	07
	(b)	Explain Druker's stability postulate for stability of work-hardening materials.	07
		OR	
Q.5	(a)	Consider a simply supported beam of span L , has depth of $2c$ and width of b , where b and c are constants. The beam is loaded at its mid-span with a point load of $2P$. Obtain stress field for using following stress function. $\Phi = Axy + Bx^2 + Cx^2y + Dy^3 + Exy^3 + Fx^2y^3 + Gy^5$	08
	(b)	Prove that to convert a plane strain solution to a plane stress solution, substitute $\frac{1+2v}{(1+v)^2}E$ for E and $\frac{v}{(1+v)}$ for v .	06
