Seat No.:

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII EXAMINATION - WINTER 2015

Subject Code: 170706 Date: 04/12/2015 **Subject Name: Computer Signal Processing** Time: 10:30am to 1:00pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. (a) Explain the two conditions for LTI system: Linear and Time-invariant. State **Q.1 07** which of these conditions are satisfied for the systems: (i) y[n]=x[n-1]/x[n], if x[n] is not zero, y[n]=0 if x[n]=0; and (ii) v[n]=(n+1)x[n]. (b) Explain the Causal, the Memory-less and the Recursive, properties of LTI 07 (Linear Time-Invariant) systems. State which of these properties are satisfied for the system, y[n] = x[n] + 0.5 x[n-1] + 0.2 y[n-1], if the system is in zero state for n<0. What is the function of anti-aliasing filter? Specify and sketch the frequency **Q.2** 07 response of an anti-aliasing filter for sampling a continuous time speech signal at a sampling-rate of 8KHz. (b) Explain the criterion for sampling of a continuous-time audio signal. Also 07 explain with a sketch the aliasing effect when the criterion is not satisfied. OR (b) Output y[n] of a LTI system with the impulse response h[n] for any input x[n]07 can be shown as, $y[n] = \sum_{k \in \mathbb{Z}} x[k]h[n-k]$. Derive the frequency response of the system from the above given equation by substitution of input $x[n]=\exp(j\omega n)$. (a) If $x[n] = 1 + e^{j\pi n/2}$ is the input to an LTI system with the frequency response **Q.3 07** $H(z)=1-z^{-1}$ then derive the output y[n]. (b) Give a general difference equation of an ARMA (Auto-Recursive Moving 07 Average) LTI system. Explain conversion of Direct Form – I to Direct Form – II realizations of a second order ARMA system. OR Give a general z-transform of a SOS (Second Order Section). Explain **Q.3** 07 (a) conversion of Direct Form -II to Transposed Form realization of the SOS. State the main advantage of using Transposed Form over the Direct Form. (b) Give the equations for computing N-point DFT (Discrete Fourier Transform) **07** and IDFT (Inverse Discrete Fourier Transform). State and explain the periodic and discrete-ness properties of the DFT with appropriate illustrations. State the necessary conditions for Causality and BIBO stability of any LTI 07 **Q.4** system with a complex conjugate pair of poles at z = p and $z = p^*$ in z-plane. Also give sketch illustrations to justify the statements. **(b)** If $x[n]=\{1, 2, 3, 4\}$ is the input to a LTI system $H(z)=(1+2z^{-1}+z^{-2})$ then derive **07** the corresponding output y[n] of the system. (a) State and prove the convolution theorem of z-transform. **Q.4 07**

1 /	/	•	1	
httn·/	/ * * / * * / * * /	011121	otetuds:	I com
$m_{\rm U}$	/ vv vv vv .	gujai	atstudy	

-,			
	(b)	How many options are there for ROC of $H(z)=1/(1+(5/4)z^{-1}+(25/16)z^{-2})$. State in each of the ROC option whether the system is causal and stable or not?	07
Q.5	(a)	Write a short note on Windowing method for design of FIR filters.	07
	(b)	Sketch the functional block diagram of architecture of a DSP (Digital Signal	07
		Processor).	
		OR	
Q.5	(a)	Find the poles of the analog Butterworth prototype filter required for design of a	07
		second order digital LPF (Low Pass Filter) with cut-off frequency of 0.2π	
		radians using Impulse Invariance mapping at sampling rate of 2Hz.	
	(b)	Sketch the signal flaw graph for DIT (Decimation-in-Time) FFT algorithm.	07
