Seat No.: \_\_\_\_\_ Enrolment No.\_\_\_\_

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

BE - SEMESTER-VII (NEW) - EXAMINATION - SUMMER 2018

Subject Code: 2170607 Date: 01/05/2018

**Subject Name:Design of Reinforced Concrete Structures** 

Time:02.30 PM to 05.30 PM Total Marks: 70

## **Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Draw neat and clean figures whenever required.
- 5. IS 456, IS 3370, IS 875, SP 16, IS 1893, IS 1343, IS 13920 are permitted.
- 6. Use M20 grade of concrete and Fe415 grade of steel, if not given.

Marks

**Q-1** (a) For the building lay out shown in fig.01 with following details, Draw the load distribution diagram and estimate the loads on a typical floor beams B13 & B14.

03

Number of storey: G+3

Floor to floor height: 3.15 m

External walls: 250 mm including plaster

Internal walls: 150 mm including plaster

Imposed load: Roof = 1.5 kN/mm<sup>2</sup>, Floor = 4.0 kN/mm<sup>2</sup> Floor finish: Roof = 1.5 kN/mm<sup>2</sup>, Floor = 1.0 kN/mm<sup>2</sup>

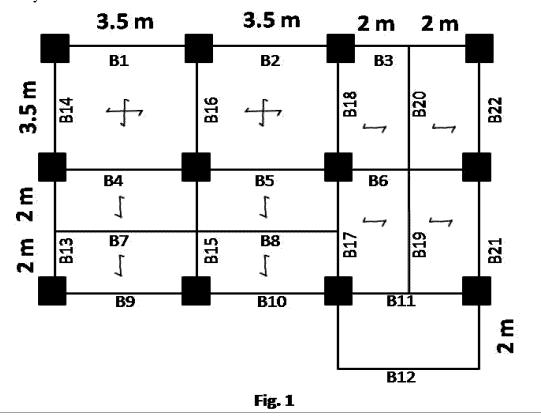
- (b) Analyze the continuous beam B11-B12 at typical floor level of a given layout (fig.01) by substitute frame method
- (c) Design the continuous beam B11-B12 at typical floor level of a given layout (fig.01) for flexure and shear. Draw diagram of beams showing reinforcement details
- Q-2 (a) Enlist advantages and disadvantages of flat slabs.

03

04

**07** 

07


- **(b)** Write the steps with codal provisions for determination of lateral loads acting at nodal points of a residential building due to wind.
- (c) Estimate wind forces for a water tank located in Gandhinagar for the following data. Total height of tank = 29 m, which includes height of the supporting shaft = 21 m, height of bottom conical portion = 2.5 m, height of cylindrical wall = 4.5 m and rise of top dome = 1 m, diameter of shaft = 4.5 m and diameter of cylindrical wall = 12 m. Topography = plane with upwind slope less than 3°.

OR

- (c) Design an interior panel of a flat slab of panel size 5m x 5m without providing drop and column head. Size of columns = 300mm x 400 mm, Live load = 4 kN/m<sup>2</sup>, Floor finish = 1 kN/m<sup>2</sup>, Height of column 4 m above and below slab.
- Q-3 (a) The cantilever retaining wall has to retain the earth with a horizontal top 3.6 m above ground level. Density of earth is  $17 \text{ kN/m}^3$ . Angle of internal friction  $\phi$  is 30 degree. SBC of soil is  $200 \text{ kN/m}^2$ . Coefficient of friction  $\mu$  is 0.5. Determine dimensions of the retaining wall.
  - **(b)** For problem 3 (a) above, check the stability of wall.

04

| http://www.gujaratstud | y.com                                                                                                                                                                                                                                                                                                                 |    |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                        | c) For problem 3 (a) above, design Toe and draw diagram showing                                                                                                                                                                                                                                                       | 07 |
|                        | reinforcement details.                                                                                                                                                                                                                                                                                                |    |
|                        | OR                                                                                                                                                                                                                                                                                                                    |    |
| Q-3                    | a) The counter fort retaining wall has to retain the earth with a horizontal top 5.0 m above ground level. Density of earth is 16 kN/m <sup>3</sup> . Angle of internal friction φ is 30 degree. SBC of soil is 190 kN/m <sup>2</sup> . Coefficient of friction μ is 0.6. Determine dimensions of the retaining wall. | 03 |
| (                      | <b>b)</b> For problem 3 (a) above, check the stability of wall.                                                                                                                                                                                                                                                       | 04 |
|                        | c) For problem 3 (a) above, design stem and draw diagram showing reinforcement details.                                                                                                                                                                                                                               | 07 |
| Q-4                    | a) The rectangular water tank open at top resting on ground having size 3.4 m x 7.2 m x 3.5 m. Design short wall. Use M30 and Fe 415.                                                                                                                                                                                 | 03 |
|                        | <b>b</b> ) For problem 4 (a) above, design long wall.                                                                                                                                                                                                                                                                 | 04 |
| (                      | c) For problem 4 (a) above, design base slab and draw detailed plan and section of water tank showing all the dimensions and reinforcements.                                                                                                                                                                          | 07 |
|                        | OR                                                                                                                                                                                                                                                                                                                    |    |
| _                      | a) Explain various Joints used in water tank.                                                                                                                                                                                                                                                                         | 03 |
|                        | b) Fix the Basic dimensions of Intze type container of an elevated water tank to store 5.5 lacs liter water and design and detail top dome. Height of staging = 15 m up to bottom of tank. Use M30 grade concrete and Fe 415 Steel.                                                                                   | 04 |
|                        | c) For problem 4(b) above, Design top ring beam and cylindrical wall.                                                                                                                                                                                                                                                 | 07 |
| Q-5                    | a) Explain 'Strong column-Weak beam' design concept.                                                                                                                                                                                                                                                                  | 03 |
| (                      | <b>b</b> ) Explain effect of Irregularities on performance of RC buildings during earthquakes.                                                                                                                                                                                                                        | 04 |
|                        | c) Draw and detail the typical qualitative reinforcement detailing of two span reinforced concrete continuous rectangular beam of dimension 230 mm X 450 mm as per IS 13920-1993.                                                                                                                                     | 07 |
|                        | OR                                                                                                                                                                                                                                                                                                                    |    |
| •                      | a) Explain Short Column Effect.                                                                                                                                                                                                                                                                                       | 03 |
|                        | b) Give the guidelines for efficient earthquake resistant design of structures                                                                                                                                                                                                                                        | 04 |
|                        | <ul> <li>Calculate base shear for the three storey RC frame building (hospital) has size 25 m X 25 m located in Surat, using seismic coefficient method for following data:</li> <li>Type of soil = Hard</li> </ul>                                                                                                   | 07 |
|                        | Intensity of dead load = $15 \text{ kN/m}^2$ (Including all members)                                                                                                                                                                                                                                                  |    |
|                        | Intensity of imposed load = $5 \text{ kN/m}^2$                                                                                                                                                                                                                                                                        |    |
|                        | Storey height $= 3.5 \text{ m}$                                                                                                                                                                                                                                                                                       |    |
|                        | Also determine the seismic forces and shears at each floor level.                                                                                                                                                                                                                                                     |    |

