GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII(NEW) EXAMINATION - SUMMER 2019

Subject Code:2171914 Date:10/05/2019

Subject Name: Gas Dynamics

Time:02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

03

- Q.1 (a) Define Mach Number. Classify compressible flow on the basis of Mach Number.
 - (b) An aircraft is flying at an altitude of 8 km where the ambient temperature is 250 K. Find the Mach number and classify as subsonic or supersonic when the speed of the aircraft is
 - a) 30 m/s
 - b) 300 m/s.
 - (c) Air flows through a duct at a pressure of 0.196 MPa with a velocity 350 m/s. The temperature of the air is 40°C. Determine the isentropic Stagnation pressure, Stagnation temperature and Stagnation density.
- Q.2 (a) Prove that $(\frac{T_0}{T^*}) = \frac{(\gamma+1)}{2}$
 - (b) Draw the shape of subsonic and supersonic nozzle and diffuser and mention the varying properties.
 - (c) Derive following expression for area ratio in terms of Mach number 07

$$\frac{A}{A^*} = \frac{1}{M} \left[\frac{2}{\gamma + 1} + \frac{\gamma - 1}{\gamma + 1} M^2 \right]^{(\gamma + 1)/2(\gamma - 1)}$$

OR

- (c) Air expands isentropically from 20 bar and 100°C to 12 bar. Determine the temperature and density at the final state. Also find the ratio if initial to final acoustic velocity.
- Q.3 (a) Write general characteristic of normal shock.
 - (b) The pressure and Mach number upstream of a normal shock are 0.1 MPa and 2.0 respectively. Determine the Mach number and pressure downstream of the shock.
 - (c) Derive the following relation for normal shock $V_1V_2 = a^{*2}$.

OR

- Q.3 (a) Write three governing equations which satisfy the state before and after a normal shock.
 - (b) Define strength of a shock wave. Find the strength of a shock wave when normal shock appears at M = 2.

Q.4

Q.4

ujara	tstudy.com											
(c)	A normal shock wave moves through a duct of constant cross-section with a velocity of 500 m/s. The air in the duct is stationary and is a pressure and temperature of 0.1 MPa and 200 K respectively. Determine the velocity of air after the passage of the shock. Also find the pressure, temperature, Mach number and											
	stagnation temperature imparted upstream of the wave. Normal Shock table:											
	M ₁ M ₂			P ₀₂ /P ₀₁ P ₂ /P ₁		T_2/T_1						
	1.46	0.71	.94		2.33	1.29						
	Isentropic table:											
	M	T/T ₀		P/P ₀		ρ/ ρ ₀)					
	0.56	0.940			0.808	0.858						
	0.58	0.936)		0.796	0.849)					
(a)	Differentiate Fanno flow and Isothermal flow.											
(b)	Draw Fanno line on h-s diagram and discuss the effect of friction in											
	subsonic and supersonic flow.											
(c)	The average friction of a 25 mm diameter 12 meter long pipe is 0.004. The condition of air at the entry are 2 bar and 300 K. Determine the mass flow rate, pressure, temperature and the mach number at exit, if the mach number at inlet is 0.25.											
(a)	<u> </u>											
(b)	Explain phenome											
(c)	Air flows through an insulated circular pipe at a rate of 495 kg/minute. The pressure, temperature and Mach number of air at entrance to the pipe are 0.3 MPa, 300 K and 0.15 respectively. The coefficient of friction for the pipe is assumed constant and its value is 0.005. if the Mach number at exit is 0.5, determine: a) The diameter of the pipe											
(g)	b) The length			otion	and bridge	lia diamat	24					
(a) (b)	Define fanning's coefficient of friction and hydraulic diameter. Air flow in a duct with a velocity of 215 m/s. The temperature of air measured at a point along the duct is 30°C and the air pressure is 5											

- **Q.5**

07

03

04

- bar. Determine the stagnation pressure.
- Show that the Mach number corresponds to the maximum entropy (c) point of a Fanno curve is unity.

- Air enters in a pipe of 0.05 m diameter at stagnation condition of 10 Q.5 bar and 400 K at Mach number of 2.8. Find the mass flow rate in pipe the pipe.
 - (b) Show graphically that zone of silence is greater than zone of action when object is moving with speed more than the velocity of sound.
 - Explain the characteristics of Rayleigh flow with suitable graphs. **07**

Fanno Flow Table (for air):

	M = 0.14	M = 0.16	M = 0.24	M = 0.26	M = 0.50	M = 0.52	M = 0.54
$\Delta f \frac{L_{max}}{}$	32.511	24.197	9.38	7.68	1.069	0.917	0.786
$\frac{4J}{D}$							
P/P*	7.80	6.829	4.538	4.185	2.138	2.051	1.971
T/T*	1.195	1.193	1.186	1.183	1.142	1.138	1.133
